Skip to main content

Advertisement

Log in

Peripheral neuropathy in Parkinson’s disease

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Peripheral neuropathy (PN) is a common neurological problem defined as a dysfunction of sensory, motor, and autonomic nerves. The presence of peripheral neuropathy has recently been noticed in Parkinson’s disease (PD) This comorbidity is concerning as it increases the burden on patients whose motor functions are previously compromised. A comprehensive computer-based literature review utilizing multiple peer-reviewed databases (e.g., Embase, PsycINFO, CINAHL, etc.) was conducted. There is evidence for the utility of robust diagnostic criteria to distinguish between large fiber neuropathy (LFN) and small fiber neuropathy (SFN). Some studies have established links between prolonged l-DOPA exposure and prevalence with increased levels of homocysteine (HCY) and methylmalonic acid (MMA) as pathological underlying mechanisms. PN in PD patients with relatively truncated exposure to l-DOPA therapy may have underlying mutations in the Parkin and MHTFR gene or separate mitochondrial disorders. Vitamin B12 and cobalamin deficiencies have also been implicated as drivers of PN. Accumulation of phosphorylated α-synuclein is another central feature in PN and deems urgent exploration via large cohort studies. Importantly, these underlying mechanisms have been linked to peripheral denervation. This review delves into the potential treatments for PN targeting B12 deficiencies and the use of COMT inhibitors along with other novel approaches. Avenues of research with powerful randomized controlled and long-term cohort studies exploring genetic mechanisms and novel treatment pathways is urgently required to alleviate the burden of disease exerted by PN on PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zis P, Grünewald RA, Chaudhuri RK, Hadjivassiliou M (2017) Peripheral neuropathy in idiopathic Parkinson’s disease: a systematic review. J Neurol Sci 378:204–209

    PubMed  Google Scholar 

  2. England JD, Asbury AK (2004) Peripheral neuropathy. Lancet 363:2151–2161

    PubMed  Google Scholar 

  3. Simon C (2009) Peripheral neuropathy. InnovAIT 2(9):538–545

    Google Scholar 

  4. Wolfe GI, Baker NS, Amato AA, Jackson CE, Nations SP, Saperstein DS, Cha CH, Katz JS, Bryan WW, Barohn RJ (1999) Chronic cryptogenic sensory polyneuropathy: clinical and laboratory characteristics. Arch Neurol 56(5):540–547

    CAS  PubMed  Google Scholar 

  5. Latov N (2002) Diagnosis of CIDP. Neurology 59(12):S2–S6

    PubMed  Google Scholar 

  6. Notermans NC, Wokke JH, van der Graaf Y (1994) Chronic idiopathic axonal polyneuropathy: a five year follow up. J Neurol Neurosurg Psychiatry 57:1525–1527

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Muller T, Van Laar T, Cornblath DR et al (2013) Peripheral neuropathy in Parkinson’s disease: levodopa exposure and implications for duodenal delivery. Parkinsonism Relat Disord 19:501–507

    PubMed  Google Scholar 

  8. Rajabelly YA, Martey J (2013) Levodopa, vitamins, ageing and the neuropathy of Parkinson’s disease. J Neurol 260:2844–2848

    Google Scholar 

  9. Leonard DR, Farooqi MH, Myer S (2004) Restoration of sensation, reduced pain, and improved balance in subjects with diabetic peripheral neuropathy: a double-blind, randomized, placebo-controlled study with monochromatic near-infrared treatment. Diabetes Care 27:168–172

    PubMed  Google Scholar 

  10. Merola A, Romagnolo A, Zibetti M, Bernardini A, Cocito D, Lopiano L (2016) Peripheral neuropathy associated with levodopa–carbidopa intestinal infusion: a long-term prospective assessment. Eur J Neurol 23:501–509

    CAS  PubMed  Google Scholar 

  11. Melamed E (1979) Early-morning dystonia: a late side effect of long-term levodopa therapy in Parkinson’s disease. Arch Neurol 36:308–310

    CAS  PubMed  Google Scholar 

  12. Ceravolo R, Cossu G, Bandettini M (2013) Neuropathy and levodopa in Parkinson’s disease: evidence from a multicenter study. Mov Disord 28:1391–1397

    CAS  PubMed  Google Scholar 

  13. Sakakibara R, Tateno F, Kishi M, Tsuyusaki Y, Terada H, Inaoka T (2014) MIBG myocardial scintigraphy in pre-motor parkinson's disease: a review. Parkinsonism Relat Disord 20:267–273

    PubMed  Google Scholar 

  14. Müller T, Jugel C, Muhlack S, Klostermann F (2014) Methyl group–donating vitamins elevate 3-O-methyldopa in patients with Parkinson disease. Clin Neuropharmacol 36:52–54

    Google Scholar 

  15. Brattstrom L, Wilcken DEL (2000) Homocysteine and cardiovascular disease: cause or effect? Am J Clin Nutr 72:315–323

    CAS  PubMed  Google Scholar 

  16. Jakubowski H (2006) Pathophysiological consequences of homocysteine excess. J Nutr 136:1741S–1749S

    CAS  PubMed  Google Scholar 

  17. Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26:137–146

    CAS  PubMed  Google Scholar 

  18. Rosenquist TH, Ratashak SA, Selhub J (1996) Homocysteine induces congenital defects of the heart and neural tube: effect of folic acid. Proc Natl Acad Sci U S A 93:15227–15232

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Reynolds EH (2017) The risks of folic acid to the nervous system in vitamin B12 deficiency: rediscovered in the era of folic acid fortification policies. J Neurol Neurosurg Psychiatry 88:1097–1098

    PubMed  Google Scholar 

  20. Brito A, Grapov D, Fahrmann J, Harvey D, Green R, Miller JW, Fedosov SN, Shahab-Ferdows S, Hampel D, Pedersen TL, Fiehn O, Newman JW, Uauy R, Allen LH (2017) The human serum metabolome of vitamin B-12 deficiency and repletion, and associations with neurological function in elderly adults. J Nutr 147:1839–1849

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Okuma Y, Hattori N, Mizuno Y (2003) Sensory neuropathy in autosomal recessive juvenile Parkinism (PARK 2). Parkinsonism Relat Disord 9:313–314

    PubMed  Google Scholar 

  22. Abbruzzese G, Pigullo S, Schenone A, Bellone E, Marchese R, di Maria E, Benedetti L, Ciotti P, Nobbio L, Bonifati V, Ajmar F, Mandich P (2004) Does Parkin play a role in the peripheral nervous system? A family report. Mov Disord 19:978–981

    PubMed  Google Scholar 

  23. Jugel C, Ehlen F, Taskin B, Marzinzik F, Müller T, Klostermann F (2013) Neuropathy in Parkinson’s disease patients with intestinal levodopa infusion versus oral drugs. PLoS One:e666–e639

  24. Nissinen E, Nissinen H, Larjonmaa H, Väänänen A, Helkamaa T, Reenilä I, Rauhala P (2005) The COMT inhibitor, entacapone, reduces levodopa-induced elevations in plasma homocysteine in healthy adult rats. J Neural Transm 112:1213–1221

    CAS  PubMed  Google Scholar 

  25. Loens S, Chorbadzhieva E, Kleimann A, Dressler D, Schrader C (2017) Effects of levodopa/carbidopa intestinal gel versus oral levodopa/carbidopa on B vitamin levels and neuropathy. Brain Behav 7:e00698

    PubMed  PubMed Central  Google Scholar 

  26. Urban PP, Wellach I, Faiss S, Layer P, Rosenkranz T, Knop K, Weis J (2010) Subacute axonal neuropathy in Parkinson’s disease with cobalamin and vitamin B6 deficiency under duodopa therapy. Mov Disord 25:1748–1752

    PubMed  Google Scholar 

  27. Meppelink AM, Nyman R, van Laar T, Drent M, Prins T, Leenders KL (2011) Transcutaneous port for continuous duodenal levodopa/carbidopa administration in Parkinson’s disease. Mov Disord 26(2):331–334

    PubMed  Google Scholar 

  28. Antonini A, Isaias IU, Canesi M, Zibetti M, Mancini F, Manfredi L, Dal Fante M, Lopiano L, Pezzoli G (2007) Duodenal levodopa infusion for advanced Parkinson’s disease: 12- month treatment outcome. Mov Disord 22:1145–1149

    PubMed  Google Scholar 

  29. Manca D, Cossu G, Murgia D, Molari A, Ferrigno P, Marcia E, Melis M (2009) Reversible encephalopathy and axonal neuropathy in Parkinson’s disease during duodopa therapy. Mov Disord 24:2293–2294

    PubMed  Google Scholar 

  30. Galazky I, Schoof J, Stallforth S, Kupsch A, Heinze HJ, Kluge C (2014) Guillain–Barre/CIDP-like neuropathy in two Parkinsonian patients following intestinal levodopa/carbidopa treatment. Parkinsonism Relat Disord 20:125–127

    PubMed  Google Scholar 

  31. Merola A, Zibetti M, Rizzone MG, Troiano M, Artusi CA, Angrisano S, Cocito D, Lopiano L (2014) Prospective assessment of peripheral neuropathy in Duodopa-treated parkinsonian patients. Acta Neurol Scand 129:e1–e5

    CAS  PubMed  Google Scholar 

  32. Fernandez HH, Standaert DG, Hauser RA, Lang AE, Fung VS, Klostermann F, Lew MF, Odin P, Steiger M, Yakupov EZ, Chouinard S (2015) Levodopa-carbidopa intestinal gel in advanced Parkinson’s disease: final 12-month, open-label results. Mov Disord 30:500–509

    CAS  PubMed  Google Scholar 

  33. Santos-García D, de la Fuente-Fernández R, Valldeoriola F, Palasí A, Carrillo F, Grande M, Mir P, De Fabregues O, Casanova J (2012) Polyneuropathy while on duodenal levodopa infusion in Parkinson’s disease patients: we must be alert. J Neurol 259:1668–1672

    PubMed  Google Scholar 

  34. Rispoli V, Simioni V, Capone JG, Golfrè Andreasi N, Preda F, Sette E, Tugnoli V, Sensi M (2017) Peripheral neuropathy in 30 duodopa patients with vitamins B supplementation. Acta Neurol Scand 136:660–667

    CAS  PubMed  Google Scholar 

  35. Devigili G, Rinaldo S, Lettieri C, Eleopra R (2016) Levodopa/carbidopa intestinal gel therapy for advanced Parkinson disease: AN early toxic effect for small nerve fibers? Muscle Nerve 54:970–972

    CAS  PubMed  Google Scholar 

  36. Uncini A, Eleopra R, Onofrj M (2015) Polyneuropathy associated with duodenal infusion of levodopa in Parkinson’s disease: features, pathogenesis and management. J Neurol Neurosurg Psychiatry 86:490–495

    PubMed  Google Scholar 

  37. Zoccolella S, Lamberti P, Armenise E, Mari M, Lamberti SV, Mastronardi R, Fraddosio A, Iliceto G, Livrea P (2005) Plasma homocysteine levels in Parkinson’s disease: role of antiparkinsonian medications. Parkinsonism Relat Disord 11:131–133

    CAS  PubMed  Google Scholar 

  38. Goyette P, Pai A, Milos R, Frosst P, Tran P, Chen Z, Chan M, Rozen R (1998) Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR). Mamm Genome 9:652–656

    CAS  PubMed  Google Scholar 

  39. Gorgone G, Curro M, Ferlazzo N, Parisi G, Parnetti L, Belcastro V, Tambasco N, Rossi A, Pisani F, Calabresi P, Ientile R (2012) Coenzyme Q10, hyperhomocysteinemia and MTHFR C677T polymorphism in levodopa-treated Parkinson’s disease patients. NeuroMolecular Med 14:84–90

    CAS  PubMed  Google Scholar 

  40. Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109

    CAS  PubMed  Google Scholar 

  41. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283:9089–9100

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wakabayashi K, Takahashi H, Takeda S, Ohama E, Ikuta F (1988) Parkinson’s disease: the presence of Lewy bodies in Auerbach's and Meissner's plexuses. Acta Neuropathol 76:217–221

    CAS  PubMed  Google Scholar 

  43. Beach TG, Adler CH, Lue L, Sue LI, Bachalakuri J, Henry-Watson J, Sasse J, Boyer S, Shirohi S, Brooks R, Eschbacher J (2009 Jun 1) Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathol 117:613–634

    PubMed  PubMed Central  Google Scholar 

  44. Luoma P, Melberg A, Rinne JO (2004) Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study. Lancet 364:875–882

    CAS  PubMed  Google Scholar 

  45. Liu S, Sawada T, Lee S, Yu W, Silverio G, Alapatt P, Millan I, Shen A, Saxton W, Kanao T, Takahashi R, Hattori N, Imai Y, Lu B (2012) Parkinson’s disease – associated kinase PINK1 regulates axonal transport of mitochondria. PLoS Genet 8:e1002537

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dabby R, Djaldetti R, Shahmurov M, Treves TA, Gabai B, Melamed E et al (2006) Skin biopsy for assessment of autonomic denervation in Parkinson's disease. J Neural Transm 113:e1169–e1176

    Google Scholar 

  48. Tolosa E, Wenning G, Poewe W (2006) The diagnosis of Parkinson’s disease. Lancet Neurol 5:75–86

    PubMed  Google Scholar 

  49. Nolano M, Provitera V, Estraneo A, Selim MM, Caporaso G, Stancanelli A, Saltalamacchia AM, Lanzillo B, Santoro L (2008) Sensory deficit in Parkinson’s disease: evidence of a cutaneous denervation. Brain 131:1903–1911

    PubMed  Google Scholar 

  50. Orimo S, Amino T, Yokochi M, Kojo T, Uchihara T, Takahashi A, Wakabayashi K, Takahashi H, Hattori N, Mizuno Y (2005) Preserved cardiac sympathetic nerve accounts for normal cardiac uptake of MIBG in PARK2. Mov Disord 20:1350–1353

    PubMed  Google Scholar 

  51. Orimo S, Oka T, Miura H, Tsuchiya K, Mori F, Wakabayashi K, Nagao T, Yokochi M (2002) Sympathetic cardiac denervation in Parkinson’s disease and pure autonomic failure but not in multiple system atrophy. J Neurol Neurosurg Psychiatry 73:776–777

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Braak H, del Tredici K, Rüb U, De Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    PubMed  Google Scholar 

  53. Del Tredici K, Rüb U, De Vos RA, Bohl JR, Braak H (2002) Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 61:413–426

    PubMed  Google Scholar 

  54. Orimo S, Takahashi A, Uchihara T, Mori F, Kakita A, Wakabayashi K, Takahashi H (2007) Degeneration of cardiac sympathetic nerve begins in the early disease process of Parkinson's disease. Brain Pathol 17:24–30

    CAS  PubMed  Google Scholar 

  55. Donadio V, Incensi A, Leta V, Giannoccaro MP, Scaglione C, Martinelli P et al (2014) Skin nerve alpha-synuclein deposits: a biomarker for idiopathic Parkinson disease. Neurology 82:e1362–e1369

    Google Scholar 

  56. Fujishiro H, Frigerio R, Burnett M, Klos KJ, Josephs KA, Delledonne A et al (2008) Cardiac sympathetic denervation correlates with clinical and pathologic stages of Parkinson’s disease. Mov Disord 23:e1085–e1092

    Google Scholar 

  57. Lebouvier T, Neunlist M, Bruley des Varannes S, Coron E, Drouard A, N'Guyen JM et al (2010) Colonic biopsies to assess the neuropathology of Parkinson’s disease and its relationship with symptoms. PLoS One 5:e127–e128

    Google Scholar 

  58. Doppler K, Ebert S, Uceyler N, Trenkwalder C, Ebentheuer J, Volkmann J et al (2014) Cutaneous neuropathy in Parkinson’s disease: a window into brain pathology. Acta Neuropathol 128:e99–e109

    Google Scholar 

  59. Wang N, Gibbons CH, Lafo J, Freeman R (2013) Alpha-synuclein in cutaneous autonomic nerves. Neurology 81:e1604–e1610

    Google Scholar 

  60. Donadio V, Incensi A, Piccinini C, Cortelli P, Giannoccaro MP, Baruzzi A, Liguori R (2016) Skin nerve misfolded α-synuclein in pure autonomic failure and Parkinson disease. Ann Neurol 79:306–316

    CAS  PubMed  Google Scholar 

  61. Gondim Fde A, de Oliveira GR, Peixoto AA Jr, Horta WG (2010) A case series of peripheral neuropathy in patients with Parkinson’s disease. Ann Neurol 68:973–975

    PubMed  Google Scholar 

  62. Rajabally YA, Martey J (2011) Neuropathy in Parkinson disease: prevalence and determinants. Neurology 77:e1947–e1950

    Google Scholar 

  63. Gusmaroli G, Barbagli D, Ravagnani M, Mongiovetti M, Capone L, Tarletti R et al (2010) Axonal polyneuropathy during duodenal levodopa treatment in a woman with idiopathic Parkinson’s disease. Mov Disord 25:S720

    Google Scholar 

  64. Palasí A, Fábregues O, Hernández-Vara J, Seoane JL, Gámez J, Álvarez-Sabín J. Small fiber peripheral neuropathy presentation after starting treatment with continuous intraduodenal levodopa infusion in one patient with Parkinson disease. In: Poster presentation at: 7th international congress on mental dysfunction and other non-motor features in Parkinson’s disease 2010

  65. Klostermann F, Jugel C, Müller T, Marzinzik F (2012) Malnutritional neuropathy under intestinal levodopa infusion. J Neural Transm 119:e369–e372

    Google Scholar 

  66. Toth C, Brown MS, Furtado S, Suchowersky O, Zochodne D (2008) Neuropathy as a potential complication of levodopa use in Parkinson’s disease. Mov Disord 23:1850–1859

    PubMed  Google Scholar 

  67. Shanb AA, Youssef EF, Al Baker WI, Al-Khamis FA, Hassan A, Jatoi NA (2020) The efficacy of adding electromagnetic therapy or laser therapy to medications in patients with diabetic peripheral neuropathy. J Lasers Med Sci 11(1):20–28

    PubMed  PubMed Central  Google Scholar 

  68. Cossu G, Ceravolo R, Zibetti M, Arca R, Ricchi V, Paribello A, Murgia D, Merola A, Romagnolo A, Nicoletti V, Palermo G (2016) Levodopa and neuropathy risk in patients with Parkinson disease: effect of COMT inhibition. Parkinsonism Relat Disord 27:81–84

    PubMed  Google Scholar 

  69. Sun T et al (2005) Effectiveness of vitamin B12 on diabetic neuropathy: systematic review of clinical controlled trials. Acta Neurol Taiwan 14(2):48–54

    CAS  PubMed  Google Scholar 

  70. Picci C, Wong VS, Costa CJ, McKinnon MC, Goldberg DC, Swift M, Alam NM, Prusky GT, Shen S, Kozikowski AP, Willis DE (2020) HDAC6 inhibition promotes α-tubulin acetylation and ameliorates CMT2A peripheral neuropathy in mice. Exp Neurol 5:113281

    Google Scholar 

  71. Lazic A, Popović J, Paunesku T, Woloschak GE, Stevanović M (2020) Insights into platinum-induced peripheral neuropathy–current perspective. Neural Regen Res 15(9):1623–1630

    PubMed  PubMed Central  Google Scholar 

  72. Massa F, Zuppa A, Pesce G, Demichelis C, Bergamaschi M, Garnero M, Briani C, Ferrari S, Schenone A, Benedetti L (2020) Bendamustine–rituximab (BR) combined therapy for treatment of immuno-mediated neuropathies associated with hematologic malignancy. J Neurol Sci 413:116777

    CAS  PubMed  Google Scholar 

  73. Prnova MS, Kovacikova L, Svik K, Bezek S, Elmazoğlu Z, Karasu C, Stefek M (2019) Triglyceride-lowering effect of the aldose reductase inhibitor cemtirestat—another factor that may contribute to attenuation of symptoms of peripheral neuropathy in STZ-diabetic rats. Naunyn Schmiedeberg's Arch Pharmacol 5:1–1

    Google Scholar 

  74. Elkholy SE, Elaidy SM, El-Sherbeeny NA, Toraih EA, Elgawly HW (2020) Neuroprotective effects of ranolazine versus pioglitazone in experimental diabetic neuropathy: targeting Nav1. 7 channels and PPAR-γ. Life Sci 14:117557

    Google Scholar 

  75. Chen CH, Huang YK, Jaw FS (2015) Ultrasound-guided perineural vitamin b12 injection for peripheral neuropathy. J Med Ultrasound 23:104–106

    Google Scholar 

  76. Nardone A, Grasso M, Schieppati M (2006) Balance control in peripheral neuropathy: are patients equally unstable under static and dynamic conditions? Gait Posture 23:364–373

    PubMed  Google Scholar 

  77. Hoeijmakers JG, Faber CG, Lauria G, Merkies IS, Waxman SG (2012) Small-fibre neuropathies – advances in diagnosis, pathophysiology and management. Nat Rev Neurol 8:369–379

    CAS  PubMed  Google Scholar 

  78. Nyholm D (2012) Duodopa® treatment for advanced Parkinson’s disease: a review of efficacy and safety. Parkinsonism Relat Disord 18:916–929

    PubMed  Google Scholar 

  79. Yeager D (2012) Diagnosing peripheral neuropathy. Aging Well 5:14

    Google Scholar 

Download references

Acknowledgments

We would like to thank Zishan Chaudry, Uzma Ahmed, and Ali Ayub to their contributions to the manuscript.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dion A. Paul.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Ethical approval

The study protocol conforms to the provisions of the Declaration of Helsinki 1995, revised in Tokyo in 2004. We confirm that we have read the Journal’s position on ethical publication and affirm that this report is consistent with those guidelines.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dion A. Paul and Abdul Rehman M. Qureshi are co-first authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, D.A., Qureshi, A.R.M. & Rana, A.Q. Peripheral neuropathy in Parkinson’s disease. Neurol Sci 41, 2691–2701 (2020). https://doi.org/10.1007/s10072-020-04407-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04407-4

Keywords

Navigation