Skip to main content

Advertisement

Log in

Eye tracking metrics to screen and assess cognitive impairment in patients with neurological disorders

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Purpose of review

Eye tracking is a powerful method to investigate the relationship between behavior and neural mechanisms. In recent years, eye movement analysis has been used in patients with neurological disorders to assess cognitive function. In this review, we explore the latest eye tracking researches in neurological disorders that are commonly associated with cognitive deficits, specifically, amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), and epilepsy. We focus on the application of ocular measures in these disorders, with the goal of understanding how eye tracking technology can be used in the clinical setting.

Findings

Eye tracking tasks (especially saccadic tasks) are often used as an adjunct to traditional scales for cognitive assessment. Eye tracking data confirmed that executive dysfunction is common in PD and ALS, whereas AD and MS are characterized by attention deficits. Research in evaluating cognitive function in epilepsy using eye tracking is still in its early stages, but this approach has shown advantages as a sensitive quantitative method with high temporal and spatial resolution.

Summary

Eye tracking technology can facilitate the assessment of cognitive impairment with higher temporal resolution and finer granularity than traditional cognitive assessment. Oculomotor data collected during cognitive tasks can provide insight into biological processes. Eye tracking provides a nonverbal and less cognitively demanding method of measuring disease progression in cognitively impaired patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gibaldi A, Vanegas M, Bex PJ et al (2017) Evaluation of the Tobii EyeX eye tracking controller and Matlab toolkit for research. Behav Res Methods 49:923–946

    Google Scholar 

  2. Pavisic IM, Firth NC, Parsons S et al (2017) Eyetracking metrics in young onset Alzheimer’s disease: a window into cognitive visual functions. Front Neurol 8:377

    PubMed Central  Google Scholar 

  3. Bekkering H, Neggers SF, Walker R et al (2001) The preparation and execution of saccadic eye and goal-directed hand movements in patients with Parkinson’s disease. Neuropsychologia 39:173–183

    CAS  Google Scholar 

  4. Jiang M, Liu S, Feng Q et al (2018) Usability study of the user-interface of intensive care ventilators based on user test and eye-tracking signals. Med Sci Monit 24:6617–6629

    PubMed Central  Google Scholar 

  5. Fielding J, Kilpatrick T, Millist L et al (2009) Multiple sclerosis: cognition and saccadic eye movements. J Neurol Sci 277:32–36

    Google Scholar 

  6. Keller J, Krimly A, Bauer L et al (2017) A first approach to a neuropsychological screening tool using eye-tracking for bedside cognitive testing based on the Edinburgh cognitive and Behavioural ALS screen. Amyotroph Lateral Scler Frontotemporal Degener 18:443–450

    Google Scholar 

  7. Unger M, Black D, Fischer NM et al (2018) Design and evaluation of an eye tracking support system for the scrub nurse. Int J Med Robot. https://doi.org/10.1002/rcs.1954e1954

  8. Wolf K, Galeano Weber E, van den Bosch JJF et al (2018) Neurocognitive development of the resolution of selective visuo-spatial attention: functional MRI evidence from object tracking. Front Psychol 9:1106

    PubMed Central  Google Scholar 

  9. Isbilir E, Cakir MP, Acarturk C et al (2019) Towards a multimodal model of cognitive workload through synchronous optical brain imaging and eye tracking measures. Front Hum Neurosci 13:375

    PubMed Central  Google Scholar 

  10. Antoniades CA, Demeyere N, Kennard C et al (2015) Antisaccades and executive dysfunction in early drug-naive Parkinson’s disease: the discovery study. Mov Disord 30:843–847

    Google Scholar 

  11. Asato MR, Nawarawong N, Hermann B et al (2011) Deficits in oculomotor performance in pediatric epilepsy. Epilepsia 52:377–385

    Google Scholar 

  12. Bastin J, Lebranchu P, Jerbi K et al (2012) Direct recordings in human cortex reveal the dynamics of gamma-band [50–150 Hz] activity during pursuit eye movement control. Neuroimage 63:339–347

    Google Scholar 

  13. Thickbroom GW, Black JL (1980) Eye motion kinetics in moving target pursuit—a system for detection of oculomotor abnormalities in neurological disorders. Int J Biomed Comput 11:427–439

    CAS  Google Scholar 

  14. Jacobs L, Bozian D, Heffner RR Jr et al (1981) An eye movement disorder in amyotrophic lateral sclerosis. Neurology 31:1282–1287

    CAS  Google Scholar 

  15. Krejtz K, Duchowski AT, Niedzielska A et al (2018) Eye tracking cognitive load using pupil diameter and microsaccades with fixed gaze. PLoS One 13:e0203629

    PubMed Central  Google Scholar 

  16. Ortega Ade O, Ciamponi AL, Mendes FM et al (2009) Assessment scale of the oral motor performance of children and adolescents with neurological damages. J Oral Rehabil 36:653–659

    Google Scholar 

  17. Irvine KA, Ferguson AR, Mitchell KD et al (2014) The Irvine, Beatties, and Bresnahan (IBB) forelimb recovery scale: an assessment of reliability and validity. Front Neurol 5:116

    PubMed Central  Google Scholar 

  18. Holthoff VA, Ferris S, Ihl R et al (2011) Validation of the relevant outcome scale for Alzheimer’s disease: a novel multidomain assessment for daily medical practice. Alzheimers Res Ther 3:27

    PubMed Central  Google Scholar 

  19. Kyroudi A, Petersson K, Ozsahin M et al (2017) Analysis of the treatment plan evaluation process in radiotherapy through eye tracking. Z Med Phys. https://doi.org/10.1016/j.zemedi.2017.11.002

  20. G. Burger, J. Guna, M. Pogacnik (2018) Suitability of inexpensive eye-tracking device for user experience evaluations. Sensors (Basel); 18

  21. Amador SC, Hood AJ, Schiess MC et al (2006) Dissociating cognitive deficits involved in voluntary eye movement dysfunctions in Parkinson’s disease patients. Neuropsychologia 44:1475–1482

    Google Scholar 

  22. Crevits L, Vandierendonck A, Stuyven E et al (2004) Effect of intention and visual fixation disengagement on prosaccades in Parkinson’s disease patients. Neuropsychologia 42:624–632

    Google Scholar 

  23. Farooqui AA, Bhutani N, Kulashekhar S et al (2011) Impaired conflict monitoring in Parkinson’s disease patients during an oculomotor redirect task. Exp Brain Res 208:1–10

    Google Scholar 

  24. Ranchet M, Orlosky J, Morgan J et al (2017) Pupillary response to cognitive workload during saccadic tasks in Parkinson’s disease. Behav Brain Res 327:162–166

    CAS  Google Scholar 

  25. Proudfoot M, Menke RA, Sharma R et al (2015) Eye-tracking in amyotrophic lateral sclerosis: a longitudinal study of saccadic and cognitive tasks. Amyotroph Lateral Scler Frontotemporal Degener 17:101–111

    PubMed Central  Google Scholar 

  26. Girardi A, Macpherson SE, Abrahams S (2011) Deficits in emotional and social cognition in amyotrophic lateral sclerosis. Neuropsychology 25:53–65

    Google Scholar 

  27. Tan RH, Ke YD, Ittner LM et al (2017) ALS/FTLD: experimental models and reality. Acta Neuropathol 133:177–196

    CAS  Google Scholar 

  28. Strong MJ, Grace GM, Freedman M et al (2009) Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10:131–146

    Google Scholar 

  29. Phukan J, Elamin M, Bede P et al (2012) The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry 83:102–108

    Google Scholar 

  30. Poletti B, Carelli L, Solca F et al (2017) An eye-tracker controlled cognitive battery: overcoming verbal-motor limitations in ALS. J Neurol 264:1136–1145

    Google Scholar 

  31. Witiuk K, Fernandez-Ruiz J, McKee R et al (2014) Cognitive deterioration and functional compensation in ALS measured with fMRI using an inhibitory task. J Neurosci 34:14260–14271

    CAS  PubMed Central  Google Scholar 

  32. Keller J, Gorges M, Horn HT et al (2015) Eye-tracking controlled cognitive function tests in patients with amyotrophic lateral sclerosis: a controlled proof-of-principle study. J Neurol 262:1918–1926

    CAS  Google Scholar 

  33. Pasqualotto E, Matuz T, Federici S et al (2015) Usability and workload of access technology for people with severe motor impairment: a comparison of brain-computer interfacing and eye tracking. Neurorehabil Neural Repair 29:950–957

    Google Scholar 

  34. Noiret N, Carvalho N, Laurent E et al (2018) Saccadic eye movements and attentional control in Alzheimer’s disease. Arch Clin Neuropsychol 33:1–13

    Google Scholar 

  35. Beltran J, Garcia-Vazquez MS, Benois-Pineau J et al (2018) Computational techniques for eye movements analysis towards supporting early diagnosis of Alzheimer’s disease: a review. Comput Math Methods Med 2018:2676409

    PubMed Central  Google Scholar 

  36. Ben Jemaa S, Attia Romdhane N, Bahri-Mrabet A et al (2017) An Arabic version of the cognitive subscale of the Alzheimer’s disease assessment scale (ADAS-cog): reliability, validity, and normative data. J Alzheimers Dis 60:11–21

    CAS  Google Scholar 

  37. Dixon JS, Saddington DG, Shiles CJ et al (2017) Clinical evaluation of brief cognitive assessment measures for patients with severe dementia. Int Psychogeriatr 29:1169–1174

    Google Scholar 

  38. Ihara R (2017) Current clinical assessment scales and cognitive tests in global clinical studies on Alzheimer’s disease. Brain Nerve 69:781–787

    Google Scholar 

  39. Reul S, Lohmann H, Wiendl H et al (2017) Can cognitive assessment really discriminate early stages of Alzheimer’s and behavioural variant frontotemporal dementia at initial clinical presentation? Alzheimers Res Ther 9:61

    PubMed Central  Google Scholar 

  40. Bott N, Madero EN, Glenn J et al (2018) Device-embedded cameras for eye tracking-based cognitive assessment: validation with paper-pencil and computerized cognitive composites. J Med Internet Res 20:e11143

    PubMed Central  Google Scholar 

  41. Julayanont P, Brousseau M, Chertkow H et al (2014) Montreal cognitive assessment memory index score (MoCA-MIS) as a predictor of conversion from mild cognitive impairment to Alzheimer’s disease. J Am Geriatr Soc 62:679–684

    Google Scholar 

  42. Daffner KR, Scinto LF, Weintraub S et al (1992) Diminished curiosity in patients with probable Alzheimer’s disease as measured by exploratory eye movements. Neurology 42:320–328

    CAS  Google Scholar 

  43. Brandao L, Moncao AM, Andersson R et al (2014) Discourse intervention strategies in Alzheimer’s disease: eye-tracking and the effect of visual cues in conversation. Dement Neuropsychol 8:278–284

    PubMed Central  Google Scholar 

  44. Boucart M, Bubbico G, Szaffarczyk S et al (2014) Animal spotting in Alzheimer’s disease: an eye tracking study of object categorization. J Alzheimers Dis 39:181–189

    Google Scholar 

  45. Chau SA, Herrmann N, Eizenman M et al (2015) Exploring visual selective attention towards novel stimuli in Alzheimer’s disease patients. Dement Geriatr Cogn Dis Extra 5:492–502

    PubMed Central  Google Scholar 

  46. Chau SA, Herrmann N, Sherman C et al (2017) Visual selective attention toward novel stimuli predicts cognitive decline in Alzheimer’s disease patients. J Alzheimers Dis 55:1339–1349

    Google Scholar 

  47. de Boer C, van der Steen J, Mattace-Raso F et al (2016) The effect of neurodegeneration on visuomotor behavior in Alzheimer’s disease and Parkinson’s disease. Mot Control 20:1–20

    Google Scholar 

  48. Heuer HW, Mirsky JB, Kong EL et al (2013) Antisaccade task reflects cortical involvement in mild cognitive impairment. Neurology 81:1235–1243

    CAS  PubMed Central  Google Scholar 

  49. Chau SA, Chung J, Herrmann N et al (2016) Apathy and attentional biases in Alzheimer’s disease. J Alzheimers Dis 51:837–846

    Google Scholar 

  50. M. Couture, A. Giguere-Rancourt, M. Simard (2018) The impact of cognitive interventions on cognitive symptoms in idiopathic Parkinson’s disease: a systematic review. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; DOI https://doi.org/10.1080/13825585.2018.15134501-22

  51. Kulisevsky J, Pagonabarraga J (2009) Cognitive impairment in Parkinson’s disease: tools for diagnosis and assessment. Mov Disord 24:1103–1110

    Google Scholar 

  52. Daniele A, Lacidogna G (2018) The need for an extensive neuropsychological assessment for a reliable diagnosis of mild cognitive impairment in patients with Parkinson’s disease. Eur J Neurol 25:795–796

    CAS  Google Scholar 

  53. Hochstadt J (2009) Set-shifting and the on-line processing of relative clauses in Parkinson’s disease: results from a novel eye-tracking method. Cortex 45:991–1011

    Google Scholar 

  54. Duprez J, Houvenaghel JF, Argaud S et al (2017) Impulsive oculomotor action selection in Parkinson’s disease. Neuropsychologia 95:250–258

    Google Scholar 

  55. Clark US, Neargarder S, Cronin-Golomb A (2010) Visual exploration of emotional facial expressions in Parkinson’s disease. Neuropsychologia 48:1901–1913

    PubMed Central  Google Scholar 

  56. Fielding J, Kilpatrick T, Millist L et al (2009) Antisaccade performance in patients with multiple sclerosis. Cortex 45:900–903

    Google Scholar 

  57. Corfield F, Langdon D (2018) A systematic review and meta-analysis of the brief cognitive assessment for multiple sclerosis (BICAMS). Neurol Ther. https://doi.org/10.1007/s40120-018-0102-3

  58. Pihl-Jensen G, Schmidt MF, Frederiksen JL (2017) Multifocal visual evoked potentials in optic neuritis and multiple sclerosis: a review. Clin Neurophysiol 128:1234–1245

    Google Scholar 

  59. Ashrafi F, Behnam B, Arab Ahmadi M et al (2016) Correlation of MRI findings and cognitive function in multiple sclerosis patients using montreal cognitive assessment test. Med J Islam Repub Iran 30:357

    PubMed Central  Google Scholar 

  60. Niccolai C, Portaccio E, Goretti B et al (2015) A comparison of the brief international cognitive assessment for multiple sclerosis and the brief repeatable battery in multiple sclerosis patients. BMC Neurol 15:204

    PubMed Central  Google Scholar 

  61. Messinis L, Kosmidis MH, Lyros E et al (2010) Assessment and rehabilitation of cognitive impairment in multiple sclerosis. Int Rev Psychiatry 22:22–34

    Google Scholar 

  62. Fielding J, Kilpatrick T, Millist L et al (2009) Control of visually guided saccades in multiple sclerosis: disruption to higher-order processes. Neuropsychologia 47:1647–1653

    Google Scholar 

  63. Clough M, Mitchell L, Millist L et al (2015) Ocular motor measures of cognitive dysfunction in multiple sclerosis II: working memory. J Neurol 262:1138–1147

    CAS  Google Scholar 

  64. Brau H, Ulrich G, Kriebitzsch R et al (1989) Quantifying functional deficits in patients with multiple sclerosis using a computer-assisted visuomotor tracking procedure. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 20:84–87

    CAS  Google Scholar 

  65. De Santi L, Lanzafame P, Spano B et al (2011) Pursuit ocular movements in multiple sclerosis: a video-based eye-tracking study. Neurol Sci 32:67–71

    Google Scholar 

  66. Nygaard GO, de Rodez Benavent SA, Harbo HF et al (2015) Eye and hand motor interactions with the symbol digit modalities test in early multiple sclerosis. Mult Scler Relat Disord 4:585–589

    Google Scholar 

  67. Bostock ECS, Kirkby KC, Garry MI et al (2017) Systematic review of cognitive function in euthymic bipolar disorder and pre-surgical temporal lobe epilepsy. Front Psychiatry 8:133

    PubMed Central  Google Scholar 

  68. Lunn J, Donovan T, Litchfield D et al (2016) Saccadic eye movement abnormalities in children with epilepsy. PLoS One 11:e0160508

    PubMed Central  Google Scholar 

  69. Stafstrom CE (2002) Assessing the behavioral and cognitive effects of seizures on the developing brain. Prog Brain Res 135:377–390

    Google Scholar 

  70. Willment K, Hill M, Baslet G et al (2015) Cognitive impairment and evaluation in psychogenic nonepileptic seizures: an integrated cognitive-emotional approach. Clin EEG Neurosci 46:42–53

    Google Scholar 

  71. Bansal AK, Madhavan R, Agam Y et al (2014) Neural dynamics underlying target detection in the human brain. J Neurosci 34:3042–3055

    CAS  PubMed Central  Google Scholar 

  72. Sato W, Kochiyama T, Uono S et al (2016) Rapid gamma oscillations in the inferior occipital gyrus in response to eyes. Sci Rep 6:36321

    CAS  PubMed Central  Google Scholar 

  73. Okruszek L, Bala A, Dziekan M et al (2017) Gaze matters! The effect of gaze direction on emotional enhancement of memory for faces in patients with mesial temporal lobe epilepsy. Epilepsy Behav 72:35–38

    Google Scholar 

  74. Nagasawa T, Matsuzaki N, Juhasz C et al (2011) Occipital gamma-oscillations modulated during eye movement tasks: simultaneous eye tracking and electrocorticography recording in epileptic patients. Neuroimage 58:1101–1109

    PubMed Central  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (grant nos. 81771407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The manuscript does not contain clinical studies or patient data.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, L., Wang, Q., Liu, D. et al. Eye tracking metrics to screen and assess cognitive impairment in patients with neurological disorders. Neurol Sci 41, 1697–1704 (2020). https://doi.org/10.1007/s10072-020-04310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04310-y

Keywords

Navigation