Skip to main content

Quantitative metabolomics of saliva using proton NMR spectroscopy in patients with Parkinson’s disease and healthy controls

Abstract

Introduction

Parkinson’s disease (PD) is a multisystem disorder of unknown etiology, highlights a broad array of symptoms and pathological features influencing organs throughout the body. The metabolic profile of saliva in patients with PD may be influenced by malabsorption in the gastroenteric tract, neurodegeneration, and mitochondrial dysfunction. In the present study, we apply a powerful NMR metabolomics approach for biomarker identification in PD using saliva, a non-invasive bio-fluid.

Methods

Metabolic profiling of saliva were studied in patients with PD (n = 76) and healthy controls (HC, n = 37) were analyzed and differentiated PD from HC. A total of 40 metabolites including aromatic amino acids, short-chain fatty acids, branched chain amino acids, taurine, and N-acetylglutamate were identified. Spectral binned data and concentration of metabolites were estimated for analysis.

Results

Increased concentration of phenylalanine, tyrosine, histidine, glycine, acetoacetate, taurine, TMAO, GABA, N-acetylglutamate, acetoin, acetate, alanine, fucose, propionate, isoleucine, and valine were observed in PD as compared to HC. Further, subgroup analysis among early PD, advanced PD, and HC groups, revealed increased metabolite concentration in early PD group as compared to advanced PD and HC group.

Discussion

Analysis revealed potential biomarkers and their involvement in amino acid metabolism, energy metabolism, neurotransmitters metabolism, and microflora system. Patients with early PD exhibited higher metabolite concentration as compared to advanced PD group which might be associated with dopaminergic treatment.

Conclusion

The results of our data indicate that patients with PD might be characterized by metabolic imbalances like gut microflora system, energy metabolites, and neurotransmitters which may contribute to the PD pathogenesis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Licker V, Turck N, Kövari E, Burkhardt K, Côte M, Surini-Demiri M, Lobrinus JA, Sanchez JC, Burkhard PR (2014) Proteomic analysis of human substantia nigra identifies novel candidates involved in parkinson’s disease pathogenesis. Proteomics 14:784–794

    Article  CAS  PubMed  Google Scholar 

  2. Tysnes OB, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm 124:901–905

    Article  PubMed  Google Scholar 

  3. Hatano T, Saiki S, Okuzumi A, Mohney RP, Hattori N (2016) Identification of novel biomarkers for Parkinson’s disease by metabolomic technologies. J Neurol Neurosurg Psychiatry 87:295–301

    Article  PubMed  Google Scholar 

  4. Lewitt PA, Li J, Lu M, Guo L, Auinger P (2017) Metabolomic biomarkers as strong correlates of Parkinson disease progression. Neurology 88:862–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Poliquin PO, Chen J, Cloutier M, Trudeau LÉ, Jolicoeur M (2013) Metabolomics and in-silico analysis reveal critical energy deregulations in animal models of Parkinson’s disease. PLoS One 8:1–9

    Article  CAS  Google Scholar 

  6. Tredici KD, Hawkes CH, Ghebremedhin E, Braak H (2010) Lewy pathology in the submandibular gland of individuals with incidental Lewy body disease and sporadic parkinson’s disease. Acta Neuropathol 119:703–713

    Article  PubMed  Google Scholar 

  7. Holsinger FC, Bui DT (2007) Anatomy, function, and evaluation of the salivary glands. Salivary Gland Disorders:1–16

  8. Devic I et al (2011) Salivary α-synuclein and DJ-1: potential biomarkers for Parkinson’s disease. Brain 134:e178

    Article  PubMed  PubMed Central  Google Scholar 

  9. Al-Nimer MSM et al (2014) Saliva α-synuclein and a high extinction coefficient protein: a novel approach in assessment biomarkers of Parkinson’s disease. N Am J Med Sci 6:633–637

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vivacqua G et al (2016) Abnormal salivary total and oligomeric alpha-synuclein in Parkinson’s disease. PLoS One 11(3):e0151156–e0151156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kang UJ, Taylor P, Naito A, Goldman JG (2018) Reply to: detection of alpha-synuclein in saliva: the importance of preanalytical assessment. Mov Disord 33:1031

    Article  PubMed  Google Scholar 

  12. Cao Z et al (2019) alpha-synuclein in salivary extracellular vesicles as a potential biomarker of Parkinson’s disease. Neurosci. Lett 696:114–120

    Article  CAS  PubMed  Google Scholar 

  13. Kumar V, Dwivedi DK, Jagannathan NR (2014) High-resolution NMR spectroscopy of human body fluids and tissues in relation to prostate cancer. NMR Biomed 27(80–89):2014

    Google Scholar 

  14. Liang Q, Liu H, Zhang T, Jiang Y, Xing H, Zhang A (2015) Metabolomics-based screening of salivary biomarkers for early diagnosis of Alzheimer’s disease. RSC Adv 5:96074–96079

    Article  CAS  Google Scholar 

  15. Figueira J, Jonsson P, Nordin Adolfsson A, Adolfsson R, Nyberg L, Öhman A (2016) NMR analysis of the human saliva metabolome distinguishes dementia patients from matched controls. Mol BioSyst 12:2562–2571

    Article  CAS  PubMed  Google Scholar 

  16. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  17. Bertram L, Tanzi RE (2005) The genetic epidemiology of neurodegenerative disease. J Clin Invest 115:1449–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Landrigan PJ, Sonawane B, Butler RN, Trasande L, Callan R, Droller D (2005) Early environmental origins of neurodegenerative disease in later life. Environ Health Perspect 113:1230–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Farah R, Haraty H, Salame Z, Fares Y, Ojcius DM, Sadier NS (2018) Salivary biomarkers for the diagnosis and monitoring of neurological diseases. Biom J 41:63–87

    Google Scholar 

  20. Bossy-Wetze E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10:S2–S9

    Article  CAS  Google Scholar 

  21. Figura M et al (2018) Serum amino acid profile in patients with Parkinson’s disease. PLoS 13:e0191670

    Article  CAS  Google Scholar 

  22. Fernstrom JD (1994) Dietary amino acids and brain function. J Am Diet Assoc 94:71–77

    Article  CAS  PubMed  Google Scholar 

  23. Dutkiewicz J, Szlufik S, Nieciecki M, Charzyńska I, Królicki L, Smektała P, Friedman A (2015) Small intestine dysfunction in Parkinson’s disease. J Neural Transm 122:1659–1661

    Article  CAS  PubMed  Google Scholar 

  24. Edwards LL, Quigley EMM, Pfeiffer RF (2012) Gastrointestinal dysfunction in Parkinson’s disease: frequency and pathophysiology. Neurology 42:726–732

    Article  Google Scholar 

  25. Braham J, Sarova-Pinhas I, Crispin M, Golan R, Levin N, Szeinberg A (1969) Oral phenylalanine and tyrosine tolerance tests in Parkinsonian patients. Br Med J 2:552–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jagenburg R, Rödjer S, Granerus AK, Svanborg A (1971) Phenylalanine absorption and metabolism in parkinsonian patients. Br Med J 4:262–264

    Article  PubMed  PubMed Central  Google Scholar 

  27. Friedman JH, Goetz CC, Stebbins GT (1997) Psychotic symptoms in Parkinson’s disease. J Am Geriatr Soc 45:252–252

    Article  CAS  PubMed  Google Scholar 

  28. Franco-Iborra S, Vila M, Perier C (2018) Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson’s disease and Huntington’s disease. Front Neurosci 12:342

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim J, Wessling-Resnick M (2014) Iron and mechanisms of emotional behavior. J Nutr Biochem 25:1101–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Trupp M, Jonsson P, Ohrfelt A, Zetterberg H, Obudulu O, Malm L, Wuolikainen A, Linder J, Moritz T, Blennow K, Antti H, Forsgren L (2014) Metabolite and peptide levels in plasma and CSF differentiating healthy controls from patients with newly diagnosed Parkinson’s disease. J Park Dis 4:549–560

    CAS  Google Scholar 

  31. Dunn L, Allen GF, Mamais A, Ling H, Li A, Duberley KE, Hargreaves IP, Pope S, Holton JL, Lees A, Heales SJ, Bandopadhyay R (2014) Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiol Aging 35:1111–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kori M, Aydın B, Unal S, Arga KY, Kazan D (2016) Metabolic biomarkers and neurodegeneration: a pathway enrichment analysis of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Omi A J Integr Biol 20:645–661

    Article  CAS  Google Scholar 

  33. Fukao T, Mitchell G, Sass JO, Hori T, Orii K, Aoyama Y (2014) Ketone body metabolism and its defects. J Inherit Metab Dis 37:541–551

    Article  CAS  PubMed  Google Scholar 

  34. Flint HJ, Duncan SH, Scott KP, Louis P (2015) Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc:7413–7422

  35. Mueller DM, Allenspach M, Othman A, Saely CH, Muendlein A, Vonbank A, Drexel H, von Eckardstein A (2015) Plasma levels of trimethylamine-N-oxide are confounded by impaired kidney function and poor metabolic control. Atherosclerosis 243:638–644

    Article  CAS  PubMed  Google Scholar 

  36. Uversky VN, Li J, Fink AL (2001) Pesticides directly accelerate the rate of α-synuclein fibril formation: a possible factor in Parkinson’s disease. FEBS Lett 500:105–108

    Article  CAS  PubMed  Google Scholar 

  37. Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production Proc. Nutr. Soc 62:67–72

    CAS  Google Scholar 

  38. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7:189–200

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marcobal A et al (2013) A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J 7:1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li Z et al (2018) Effects of metabolites derived from gut microbiota and hosts on pathogens. Front. Cell. Infect. Microbiol 8:314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barbe AG, Bock N, Derman SHM, Felsch M, Timmermann L, Noack MJ (2017) Self-assessment of oral health, dental health care and oral health-related quality of life among Parkinson’s disease patients. Gerodontology 34:135–143

    Article  PubMed  Google Scholar 

  43. Babu GN, Gupta M, Paliwal VK, Singh S, Chatterji T, Roy R (2018) Serum metabolomics study in a group of Parkinson’s disease patients from northern India. Clin Chim Acta 480:214–219

    Article  CAS  Google Scholar 

  44. Shannon K, Berghe PV (2018) The enteric nervous system in PD: gateway, by stander victim, or source of solutions. Cell Tissue Res 373:313–326

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all the participants involved in this study. Ms. Sadhana Kumari acknowledges the Council of Scientific & Industrial Research (CSIR), Government of India (No. 09/006(0458)/2015-EMR-I) for providing the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Senthil Kumaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standards

The study was initiated after the approval of the study by the Institute Ethics Committee (IEC). Prior informed consent in writing was obtained from all the participants involved in the study, before collecting the samples.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 238 kb)

ESM 2

(DOC 76 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Goyal, V., Kumaran, S.S. et al. Quantitative metabolomics of saliva using proton NMR spectroscopy in patients with Parkinson’s disease and healthy controls. Neurol Sci 41, 1201–1210 (2020). https://doi.org/10.1007/s10072-019-04143-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-019-04143-4

Keywords

  • Parkinson’s disease
  • Salivary metabolomics
  • NMR
  • Biomarkers
  • Malabsorption
  • Spectroscopy