Skip to main content
Log in

HMGB1 as a potential new marker of disease activity in patients with multiple sclerosis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objectives

Neuroinflammation represents one of the two major pathological components of multiple sclerosis (MS). The aim of our study was to find the role of the late pro-inflammatory cytokine HMGB1 (high mobility group box) in MS pathogenesis.

Subjects and methods

A total of 165 patients from three MS centers in Slovakia were enrolled in the study. Patients underwent a complex clinical investigation and their plasma levels of HMGB1 were analyzed by a sandwich ELISA test.

Results

MS patients had 4.5 times higher plasma level of HMGB1 (median, 13.529 ng/mL; IQR = 2.330-113.45) than healthy controls (median, 2.999 ng/mL; IQR = 1.686-9.844; P < 0.0001). The concentrations of HMGB1 were significantly associated with increased number of affected areas diagnosed by MRI (P < 0.0001) (the median for one affected area, 4.205 ng/mL; median for five affected areas, 17.843 ng/mL; P < 0.05). Patients with at least one active lesion in any of the affected areas in the brain had significantly higher plasma levels of HMGB1 (median, 20.118 ng/mL; IQR, 3.693–100.12) than those without any active lesion (median, 16.695 ng/mL; IQR, 3.255–113.45; P < 0.0235). We found also a very highly significant association of HMGB1 plasma levels with clinical condition expressed as EDSS (expanded disability status scale) (P < 0.0001); patients with higher EDSS had higher levels of HMGB1 (EDSS ≤ 2.5, 11.648 ng/mL vs. EDSS ≥ 3, 17.549 ng/mL; P = 0.0115).

Conclusion

Our results suggest chronic low-grade inflammation in MS patients that correlates with clinical conditions of MS patients, and for HMGB1 as a possible target molecule in future therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koch-Henriksen N, Sørensen PS (2010) The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol 9:520–532

    Article  Google Scholar 

  2. Kurtzke JF (2000) Epidemiology of multiple sclerosis. Does this really point toward an etiology? Lectio doctoralis. Neurol Sci 21:383–403

    Article  CAS  Google Scholar 

  3. Torbus-Paluszczak M, Bartman W, Adamczyk-Sowa M (2018) Klotho protein in neurodegenerative disorders. Neurol Sci 39(10):1677–1682

    Article  Google Scholar 

  4. Lassmann H, Brück W, Lucchinetti C (2007) The immuno-pathology of multiple sclerosis: an overview. Brain Pathol 17:210–218

    Article  Google Scholar 

  5. Lucchinetti CF, Popescu BF, Bunyan RF et al (2011) Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 365:2188–2197

    Article  CAS  Google Scholar 

  6. Pierrot-Deseilligny C, Souberbielle JC (2017) Vitamin D and multiple sclerosis: an update. Mult Scler Relat Disord 14:35–45

    Article  Google Scholar 

  7. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517

    Article  CAS  Google Scholar 

  8. Hughes AJ, Dunn KM, Chaffee T (2018) Sleep disturbance and cognitive dysfunction in multiple sclerosis: a systematic review. Curr Neurol Neurosci Rep 18(1):2

    Article  Google Scholar 

  9. Hughes J, Jokubaitis V, Lugaresi A, Hupperts R, Izquierdo G, Prat A, Girard M, Duquette P, Grand'Maison F, Grammond P, Sola P, Ferraro D, Ramo-Tello C, Trojano M, Slee M, Shaygannejad V, Boz C, Lechner-Scott J, van Pesch V, Pucci E, Solaro C, Verheul F, Terzi M, Granella F, Spitaleri D, Alroughani R, Jun JK, Fambiatos A, van der Walt A, Butzkueven H, Kalincik T, MSBase Study Group (2018) Association of inflammation and disability accrual in patients with progressive-onset multiple sclerosis. JAMA Neurol 75:1407–1415

    Article  Google Scholar 

  10. Sadeghi Bahmani D, Kesselring J, Papadimitriou M et al (2019) In patients with multiple sclerosis, both objective and subjective sleep, depression, fatigue, and paresthesia improved after 3 weeks of regular exercise. Front Psychiatry 10:265

    Article  Google Scholar 

  11. Razazian N, Yavari Z, Farnia V, Azizi A, Kordavani L, Bahmani DS, Holsboer-Trachsler E, Brand S (2016) Exercising impacts on fatigue, depression, and paresthesia in female patients with multiple sclerosis. Med Sci Sports Exerc 48:796–803

    Article  CAS  Google Scholar 

  12. Buc M (2013) Role of regulatory T cells in pathogenesis and biological therapy of multiple sclerosis. Mediat Inflamm 963748

  13. Jadidi-Niaragh F, Mirshafiey A (2012) The deviated balance between regulatory T cell and Th17 in autoimmunity. Immunopharmacol Immunotoxicol 34:727–739

    Article  CAS  Google Scholar 

  14. Mohiuddin IH, Pillai V, Baughman EJ et al (2016) Induction of regulatory T-cells from memory T-cells is perturbed during acute exacerbation of multiple sclerosis. Clin Immunol 166-167:12–18

    Article  CAS  Google Scholar 

  15. Muls N, Jnaoui K, Dang HA, Wauters A, van Snick J, Sindic CJ, van Pesch V (2012) Upregulation of IL-17, but not of IL-9, in circulating cells of CIS and relapsing MS patients. Impact of corticosteroid therapy on the cytokine network. J Neuroimmunol 243:73–80

    Article  CAS  Google Scholar 

  16. Kleinewietfeld M, Hafler DA (2014) Regulatory T cells in autoimmune neuroinflammation. Immunol Rev 259:231–244

    Article  CAS  Google Scholar 

  17. Kürtüncü M, Tüzün E, Türkoğlu R, Petek-Balcı B, Içöz S, Pehlivan M, Birişik Ö, Ulusoy C, Shugaiv E, Akman-Demir G, Eraksoy M (2012) Effect of short-term interferon-β treatment on cytokines in multiple sclerosis: significant modulation of IL-17 and IL-23. Cytokine 59:400–402

    Article  Google Scholar 

  18. Skundric DS, Cruikshank WW, Montgomery PC, Lisak RP, Tse HY (2015) Emerging role of IL-16 in cytokine-mediated regulation of multiple sclerosis. Cytokine S1043-4666(15):00009–00005

    Google Scholar 

  19. Waisman A, Hauptmann J, Regen T (2015) The role of IL-17 in CNS diseases. Acta Neuropathol 129:625–637

    Article  CAS  Google Scholar 

  20. Pérez-Cerdá F, Sánchez-Gómez MV, Matute C (2016) The link of inflammation and neurodegeneration in progressive multiple sclerosis. Mult Scler Demyel Disord 1:1–9

    Article  Google Scholar 

  21. Lubetzki C, Stankoff B (2014) Demyelination in multiple sclerosis. Handb Clin Neurol 122:89–99

    Article  Google Scholar 

  22. Lazibat I, Rubinić Majdak M, Županić S (2018) Multiple sclerosis: new aspects of immunopathogenesis. Acta Clin Croat 57:352–361

    PubMed  PubMed Central  Google Scholar 

  23. Naglova H, Bucova M (2012) HMGB1 and its physiological and pathological roles. Bratisl Lek Listy 113:163–171

    CAS  PubMed  Google Scholar 

  24. He SJ, Cheng J, Feng X, Yu Y, Tian L, Huang Q (2017) The dual role and therapeutic potential of high-mobility group box 1 in cancer.Oncotarget 8:64534-64550

  25. Goodwin GH, Sanders C, Johns EW (1973) A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem 38:14–19

    Article  CAS  Google Scholar 

  26. Landsman D, Bustin M (1993) A signature for the HMG-1 box DNA-binding proteins. Bioessays 15:539–546

    Article  CAS  Google Scholar 

  27. Tsuda K, Kikuchi M, Mori K, Waga S, Yoshida M (1988) Primary structure of non-histone protein HMG1 revealed by the nucleotide sequence. Biochemistry 27:6159–6163

    Article  CAS  Google Scholar 

  28. Pellegrini L, Foglio E, Pontemezzo E, Germani A, Russo MA, Limana F (2019) HMGB1 and repair: focus on the heart. Pharmacol Ther 196:160–182

    Article  CAS  Google Scholar 

  29. Deng M, Scott MJ, Fan J, Billiar TR (2019) Location is the key to function: HMGB1 in sepsis and trauma-induced inflammation. J Leukoc Biol 106:161–169

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang H, Tracey KJ (2010) Targeting HMGB1 in inflammation. Biochim Biophys Acta 1799:149–156

    Article  CAS  Google Scholar 

  31. Polman C, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O'Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302

    Article  Google Scholar 

  32. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452

    Article  CAS  Google Scholar 

  33. Roxburgh RH, Seaman SR, Masterman T, Hensiek AE, Sawcer SJ, Vukusic S, Achiti I, Confavreux C, Coustans M, le Page E, Edan G, McDonnell G, Hawkins S, Trojano M, Liguori M, Cocco E, Marrosu MG, Tesser F, Leone MA, Weber A, Zipp F, Miterski B, Epplen JT, Oturai A, Sørensen PS, Celius EG, Lara NT, Montalban X, Villoslada P, Silva AM, Marta M, Leite I, Dubois B, Rubio J, Butzkueven H, Kilpatrick T, Mycko MP, Selmaj KW, Rio ME, Sá M, Salemi G, Savettieri G, Hillert J, Compston DA (2005) Multiple Sclerosis Severity Score: using disability and disease duration to rate disease severity. Neurology 64:1144–1151

    Article  CAS  Google Scholar 

  34. Cendrowski WS (1985) Progression index and disability status in multiple sclerosis: a resurvey of 207 patients in central Poland. Swiss Arch Neurol Psychiatry Psychother 137:5–13

    Google Scholar 

  35. Bjelobababa I, Savic D, Lavrnja I (2017) Multiple sclerosis and neuroinflammation: the overview of current and prospective therapies. Curr Pharm Des 23:693–730

    Article  Google Scholar 

  36. Kuhlmann T, Ludwin S, Prat A, Antel J, Bruck W, Lassmann H (2017) An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol 133:13–24

    Article  CAS  Google Scholar 

  37. Zindler E, Zipp F (2010) Neuronal injury in chronic CNS inflammation. Best Pract Res Clin Anaesthesiol 24:551–562

    Article  CAS  Google Scholar 

  38. Zhu S, Li W, Ward MF, Sama AE, Wang H (2010) High mobility group box 1 protein as a potential drug target for infection- and injury-elicited inflammation. Inflamm Allergy Drug Targets 9:60–72

    Article  Google Scholar 

  39. Zhen C, Wang Y, Li D, Zhang W, Zhang H, Yu X, Wang X (2019) Relationship of High-mobility group box 1 levels and multiple sclerosis: a systematic review and meta-analysis. Mult Scler Relat Disord 31:87–92

    Article  Google Scholar 

  40. Zhu B, Zhu Q, Li N, Wu T, Liu S, Liu S (2018) Association of serum/plasma high mobility group box 1 with autoimmune diseases: a systematic review and meta-analysis. Medicine (Baltimore) 97(29):e11531

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our acknowledgments go to all patients contributing to this study.

Funding

This work was supported by grant Vega 1/0833/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Bucova.

Ethics declarations

The study was approved by a local Ethic Committee of Faculty of Medicine, Comenius University, in Bratislava and each patient has signed informed consent.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucova, M., Majernikova, B., Durmanova, V. et al. HMGB1 as a potential new marker of disease activity in patients with multiple sclerosis. Neurol Sci 41, 599–604 (2020). https://doi.org/10.1007/s10072-019-04136-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-019-04136-3

Keywords

Navigation