Skip to main content
Log in

The TP53 p.R337H mutation is uncommon in a Brazilian cohort of pediatric patients diagnosed with ependymoma

  • Brief Communication
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Ependymoma (EPN) is the third most common childhood cancer of the central nervous system. RELA fusion-positive EPN accounts for approximately 70% of all childhood supratentorial tumors and shows the worst prognosis among the supratentorial EPNs. TP53 mutation is infrequent in RELA fusions EPNs. In the population from the Southern region of Brazil, there is a high incidence of the germline TP53 p.R337H mutation that predisposes carriers to develop early-onset tumors. However, despite this high incidence, the frequency of this mutation among EPN patients remains to be determined. Here, we investigated the presence of the TP53 p.R337H mutation in a larger cohort of pediatric EPNs of three institutions located in the state of São Paulo, Brazil.

Methods

The TP53 p.R337H mutation was screened by conventional RT-PCR and Sanger sequencing in 49 pediatric EPNs diagnosed during the period from 1995 to 2016.

Results

We described for the first time a case of a 5-year-old girl with RELA fusion EPN with a heterozygous TP53 p.R337H mutation.

Conclusions

The present finding indicates that the TP53 p.R337H germline mutation is uncommon in patients with EPN in Brazil and screening of pediatric patients RELA fusion EPN may be informative to better understand the role of TP53 germline mutations in the development and prognosis of these tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Wu J, Armstrong TS, Gilbert MR (2016) Biology and management of ependymomas. Neuro Oncol 18:902–913. https://doi.org/10.1093/neuonc/now016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pajtler KW, Witt H, Sill M et al (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27:728–743. https://doi.org/10.1016/j.ccell.2015.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Parker M, Mohankumar KM, Punchihewa C et al (2014) C11orf95–RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 506:451–455. https://doi.org/10.1038/nature13109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Witt H, Gramatzki D, Hentschel B et al (2018) DNA methylation-based classification of ependymomas in adulthood: implications for diagnosis and treatment. Neuro Oncol 20:1616–1624. https://doi.org/10.1093/neuonc/noy118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fink K, Rushing E, Schold SC, Nisen P (1996) Infrequency of p53 gene mutations in ependymomas. J Neurooncol 27:111–115. https://doi.org/10.1007/BF00177473

    Article  CAS  PubMed  Google Scholar 

  6. Nozaki M, Tada M, Matsumoto R et al (1998) Rare occurrence of inactivating p53 gene mutations in primary non-astrocytic tumors of the central nervous system: reappraisal by yeast functional assay. Acta Neuropathol 95:291–296. https://doi.org/10.1007/s004010050800

    Article  CAS  PubMed  Google Scholar 

  7. Tzaridis T, Milde T, Pajtler KW, et al Low-dose actinomycin-D treatment re-establishes the tumour-suppressive function of P53 in RELA-positive ependymoma. 7:

  8. McBride KA, Ballinger ML, Killick E et al (2014) Li-Fraumeni syndrome: cancer risk assessment and clinical management. Nat Rev Clin Oncol 11:260–271. https://doi.org/10.1038/nrclinonc.2014.41

    Article  CAS  PubMed  Google Scholar 

  9. Ferrarini A, Auteri-Kaczmarek A, Pica A et al (2011) Early occurrence of lung adenocarcinoma and breast cancer after radiotherapy of a chest wall sarcoma in a patient with a de novo germline mutation in TP53. Fam Cancer 10:187–192. https://doi.org/10.1007/s10689-010-9415-9

    Article  PubMed  Google Scholar 

  10. Henry E, Villalobos V, Million L et al (2012) Chest wall leiomyosarcoma after breast-conservative therapy for early-stage breast cancer in a young woman with Li-Fraumeni syndrome. J Natl Compr Cancer Netw 10:939–942. https://doi.org/10.6004/jnccn.2012.0097

    Article  Google Scholar 

  11. Heymann S, Delaloge S, Rahal A et al (2010) Radio-induced malignancies after breast cancer postoperative radiotherapy in patients with Li-Fraumeni syndrome. Radiat Oncol 5:104. https://doi.org/10.1186/1748-717X-5-104

    Article  PubMed  PubMed Central  Google Scholar 

  12. Limacher J-M, Frebourg T, Natarajan-Ame S, Bergerat J-P (2001) Two metachronous tumors in the radiotherapy fields of a patient with Li-Fraumeni syndrome. Int J Cancer 96:238–242. https://doi.org/10.1002/ijc.1021

    Article  CAS  PubMed  Google Scholar 

  13. Salmon A, Amikam D, Sodha N et al (2007) Rapid development of post-radiotherapy sarcoma and breast cancer in a patient with a novel germline ‘De-Novo’ TP53 mutation. Clin Oncol 19:490–493. https://doi.org/10.1016/j.clon.2007.05.001

    Article  CAS  Google Scholar 

  14. Custódio G, Parise GA, Kiesel Filho N et al (2013) Impact of neonatal screening and surveillance for the TP53 R337H mutation on early detection of childhood adrenocortical tumors. J Clin Oncol 31:2619–2626. https://doi.org/10.1200/JCO.2012.46.3711

    Article  PubMed  PubMed Central  Google Scholar 

  15. Achatz MIW, Olivier M, Le Calvez F et al (2007) The TP53 mutation, R337H, is associated with Li-Fraumeni and Li-Fraumeni-like syndromes in Brazilian families. Cancer Lett 245:96–102. https://doi.org/10.1016/j.canlet.2005.12.039

    Article  CAS  PubMed  Google Scholar 

  16. Giacomazzi J, Graudenz MS, Osorio CABT et al (2014) Prevalence of the TP53 p.R337H mutation in breast cancer patients in Brazil. PLoS One 9:e99893. https://doi.org/10.1371/journal.pone.0099893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seidinger AL, Mastellaro MJ, Paschoal Fortes F et al (2011) Association of the highly prevalent TP53 R337H mutation with pediatric choroid plexus carcinoma and osteosarcoma in Southeast Brazil. Cancer 117:2228–2235. https://doi.org/10.1002/cncr.25826

    Article  CAS  PubMed  Google Scholar 

  18. Formiga MN d C, de Andrade KC, Kowalski LP, Achatz MI (2017) Frequency of thyroid carcinoma in Brazilian TP53 p.R337H carriers with Li Fraumeni syndrome. JAMA Oncol 3:1400. https://doi.org/10.1001/jamaoncol.2016.6389

    Article  PubMed  PubMed Central  Google Scholar 

  19. Seidinger AL, Fortes FP, Mastellaro MJ et al (2015) Occurrence of neuroblastoma among TP53 p.R337H carriers. PLoS One 10:e0140356. https://doi.org/10.1371/journal.pone.0140356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhukova N, Ramaswamy V, Remke M et al (2013) Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol 31:2927–2935. https://doi.org/10.1200/JCO.2012.48.5052

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hosoya T, Kambe A, Nishimura Y et al (2018) Pediatric case of Li-Fraumeni syndrome complicated with supratentorial anaplastic ependymoma. World Neurosurg 120:125–128. https://doi.org/10.1016/j.wneu.2018.08.203

    Article  PubMed  Google Scholar 

  22. Metzger AK, Sheffield VC, Duyk G et al (1991) Identification of a germ-line mutation in the p53 gene in a patient with an intracranial ependymoma. Proc Natl Acad Sci 88:7825–7829. https://doi.org/10.1073/pnas.88.17.7825

    Article  CAS  PubMed  Google Scholar 

  23. Assumpção JG, Seidinger AL, Mastellaro MJ et al (2008) Association of the germline TP53 R337H mutation with breast cancer in southern Brazil. BMC Cancer 8:1–6. https://doi.org/10.1186/1471-2407-8-357

    Article  CAS  Google Scholar 

  24. Imamura J, Nakamura H, Koeffler HP et al (1993) Mutation of the p53 gene in neuroblastoma and its relationship with N-myc amplification. Cancer Res 53:4053–4058

    CAS  PubMed  Google Scholar 

  25. Evans DGR (2005) Malignant transformation and new primary tumours after therapeutic radiation for benign disease: substantial risks in certain tumour prone syndromes. J Med Genet 43:289–294. https://doi.org/10.1136/jmg.2005.03631

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This collaborative study was supported by the Brazilian Public Research Agencies: Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP)—grant nos. 2014/20341-0, 2015/03614-5 and 2016/19820-6, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) – Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grant nos. 457884/2014-2 and 151760/2018-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kleiton Silva Borges.

Ethics declarations

This study was approved by the Institutional Ethics Committee (HCFMRP-USP Number: 15509/2016).

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida Magalhães, T., Borges, K.S., de Sousa, G.R. et al. The TP53 p.R337H mutation is uncommon in a Brazilian cohort of pediatric patients diagnosed with ependymoma. Neurol Sci 41, 691–694 (2020). https://doi.org/10.1007/s10072-019-04112-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-019-04112-x

Keywords

Navigation