Impact of opium dependency on clinical and neuropsychological indices of multiple sclerosis patients


The aim of this study was to determine the effect of opium on clinical and neuropsychological parameters in multiple sclerosis (MS) patients with substance dependency. A cross-sectional study was conducted on MS patients in Rafsanjan, Iran. Forty opium-addict MS patients (10 males and 30 females) aged between 18 and 50 years were compared with 40 MS patients with no addiction. Word-Pair Learning, Mini-Mental State Examination (MMSE), Wisconsin Card-Sorting Test (WCST), Depression, Anxiety, Expanded Disability Status Scale (EDSS), Fatigue, and the Multiple Sclerosis Functional Composite (MSFC) were measured and compared in the two groups. The comparison of two groups showed a significant increase trait anxiety (P < 0.001), fatigue (P = 0.009) and significant decrease in the executive function (P = 0.003), MMSE (P = 0.003), and working memory (P < 0.001) in addicted MS. It indicates the better efficiency of processing in the non-addicted MS patients. The MSFC z-score also was significantly higher in the non-addicted group (P < 0.001). The opium addiction has a negative impact on the clinical and neuropsychological outcome in MS patients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis results of an international survey. Neurology 46(4):907–911

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Duquette P, Pleines J, Girard M, Charest L, Senecal-Quevillon M, Masse C (1992) The increased susceptibility of women to multiple sclerosis. Can J Neurol Sci 19(4):466–471

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Chiaravalloti ND, DeLuca J (2008) Cognitive impairment in multiple sclerosis. Lancet Neurol 7(12):1139–1151

    PubMed  Article  Google Scholar 

  4. 4.

    Beatty WW (2004) RBANS analysis of verbal memory in multiple sclerosis. Arch Clin Neuropsychol 19(6):825–834

    PubMed  Article  Google Scholar 

  5. 5.

    Litvan I, Grafman J, Vendrell P, Martinez JM (1988) Slowed information processing in multiple sclerosis. Arch Neurol 45(3):281–285

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Benedict RH, Ramasamy D, Munschauer F, Weinstock-Guttman B, Zivadinov R (2009) Memory impairment in multiple sclerosis: correlation with deep grey matter and mesial temporal atrophy. J Neurol Neurosurg Psychiatry 80(2):201–206

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Benedict RH, Weinstock-Guttman B, Fishman I, Sharma J, Tjoa CW, Bakshi R (2004) Prediction of neuropsychological impairment in multiple sclerosis: comparison of conventional magnetic resonance imaging measures of atrophy and lesion burden. Arch Neurol 61(2):226–230

    PubMed  Article  Google Scholar 

  8. 8.

    Peltz G, Südhof TC (2018) The neurobiology of opioid addiction and the potential for prevention strategies. Jama 319(20):2071–2072

    PubMed  Article  Google Scholar 

  9. 9.

    Clifford DB, Trotter JL (1984) Pain in multiple sclerosis. Arch Neurol 41(12):1270–1272

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Rog DJ, Nurmikko TJ, Friede T, Young CA (2005) Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology 65(6):812–819

    PubMed  Article  Google Scholar 

  11. 11.

    Archibald C, McGrath P, Ritvo P, Fisk J, Bhan V, Maxner C, Murray T (1994) Pain prevalence, severity and impact in a clinic sample of multiple sclerosis patients. Pain 58(1):89–93

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Ballantyne JC, LaForge SK (2007) Opioid dependence and addiction during opioid treatment of chronic pain. Pain 129(3):235–255

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Eisenberg E, McNicol ED, Carr DB (2005) Efficacy and safety of opioid agonists in the treatment of neuropathic pain of nonmalignant origin: systematic review and meta-analysis of randomized controlled trials. JAMA 293(24):3043–3052

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Noble F, Cox BM (1996) Differential desensitization of μ-and δ-opioid receptors in selected neural pathways following chronic morphine treatment. Br J Pharmacol 117(1):161–169

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Goldapple K, Segal Z, Garson C, Lau M, Bieling P, Kennedy S, Mayberg H (2004) Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch Gen Psychiatry 61(1):34–41

    PubMed  Article  Google Scholar 

  16. 16.

    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Boscarino JA, Hoffman SN, Han JJ (2015) Opioid-use disorder among patients on long-term opioid therapy: impact of final DSM-5 diagnostic criteria on prevalence and correlates. Subst Abus Rehabil 6:83

    Article  Google Scholar 

  18. 18.

    Milgram S (1963) Behavioral study of obedience. J Abnorm Psychol 67(4):371–378

    CAS  PubMed  Google Scholar 

  19. 19.

    Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Puente A (1985) Wisconsin Card-Sorting Test. Test Critiques 4:677–682

    Google Scholar 

  21. 21.

    Beck AT, Epstein N, Brown G, Steer RA (1988) An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol 56(6):893–897

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Ghassemzadeh H, Mojtabai R, Karamghadiri N, Ebrahimkhani N (2005) Psychometric properties of a Persian-language version of the Beck Depression Inventory--second edition: BDI-II-PERSIAN. Depress Anxiety 21(4):185–192

    PubMed  Article  Google Scholar 

  23. 23.

    Spielberger CD (1970) STAI manual for the state-trait anxiety inventory. Self-Evaluation Questionnaire 6(2):1-24

  24. 24.

    Kaviani H, Mousavi A (2008) Psychometric properties of the Persian version of Beck Anxiety Inventory (BAI). Tehran Univ Med J TUMS Publ 66(2):136–140

    Google Scholar 

  25. 25.

    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis an expanded disability status scale (EDSS). Neurology 33(11):1444–1452

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Krupp LB, Alvarez LA, LaRocca NG, Scheinberg LC (1988) Fatigue in multiple sclerosis. Arch Neurol 45(4):435–437

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Gronwall D (1977) Paced auditory serial-addition task: a measure of recovery from concussion. Percept Mot Skills 44(2):367–373

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Litvan I, Grafman J, Vendrell P, Martinez JM, Junqué C, Vendrell JM, Barraquer-Bordas JL (1988) Multiple memory deficits in patients with multiple sclerosis: exploring the working memory system. Arch Neurol 45(6):607–610

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Arnett PA, Higginson CI, Voss WD, Bender WI, Wurst JM, Tippin JM (1999) Depression in multiple sclerosis: relationship to working memory capacity. Neuropsychology 13(4):546–556

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Rao SM, Grafman J, DiGiulio D, Mittenberg W, Bernardin L, Leo GJ, Luchetta T, Unverzagt F (1993) Memory dysfunction in multiple sclerosis: its relation to working memory, semantic encoding, and implicit learning. Neuropsychology 7(3):364–374

    Article  Google Scholar 

  31. 31.

    Ghafari E, Costa H, Júlio E, Portugal A, Durães L (2014) The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete. Mater Des 59:1–9

    CAS  Article  Google Scholar 

  32. 32.

    Sarkaki A, Assaei R, Motamedi F, Badavi M, Pajouhi N (2008) Effect of parental morphine addiction on hippocampal long-term potentiation in rats offspring. Behav Brain Res 186(1):72–77

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Sánchez LM, Olivares PT, Nieto BA, Hernández PM, Barroso RJ (2004) Multiple sclerosis and depression. Rev Neurol 38(6):524–529

    Google Scholar 

  34. 34.

    Chen CC, Tsai SY, Su LW, Yang TW, Tsai CJ, Hwu HG (1999) RESEARCH REPORT Psychiatric co-morbidity among male heroin addicts: differences between hospital and incarcerated subjects in Taiwan. Addiction 94(6):825–832

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Karam EG, Yabroudi PF, Melhem NM (2002) Comorbidity of substance abuse and other psychiatric disorders in acute general psychiatric admissions: a study from Lebanon. Compr Psychiatry 43(6):463–468

    PubMed  Article  Google Scholar 

Download references


We thank the patients who participated in the study, the study-site personnel, and members of the Special Medical Center in Ali-Ebn-Abitaleb hospital in Rafsanjan, Iran.


This study was made possible by financial and technical support of the physiology and pharmacology research center of Rafsanjan University of Medical Sciences (grant no: 9/459).

Author information



Corresponding author

Correspondence to Amir Moghadam-Ahmadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayoobi, F., Bidaki, R., Shamsizadeh, A. et al. Impact of opium dependency on clinical and neuropsychological indices of multiple sclerosis patients. Neurol Sci 40, 2501–2507 (2019).

Download citation


  • Opium
  • Cognition
  • Multiple sclerosis
  • Addiction
  • Substance dependency