Advertisement

Neurological Sciences

, Volume 39, Issue 6, pp 1093–1104 | Cite as

Thrombomodulin, alarmin signaling, and copeptin: cross-talk between obesity and acute ischemic stroke initiation and severity in Egyptians

  • Walaa A. Keshk
  • Doaa H. Zineldeen
  • Yasser A. El-heneedy
  • Azza A. Ghali
Original Article
  • 116 Downloads

Abstract

Acute ischemic stroke (AIS) is followed by a strong inflammatory response contributing to brain damage and making early diagnosis and treatment inevitable. Hence, obesity is a state of chronic inflammation with amplified oxidative stress; this study aimed to assess the role played by thrombomodulin (TM)/alarmin signaling pathway and copeptin in AIS initiation and severity in addition to the implication of abnormal body weight. The study was conducted on 50 participants; 30 were patients with AIS (15 overweight/obese and 15 normal weight), 10 were overweight/obese, and 10 were normal weight. Plasma TM, copeptin, high mobility group box1 (HMGB1), and lipocalin 2 (LCN2) levels were immunoassayed. Toll-like receptor 4 (TLR4) mRNA expression was evaluated by real-time PCR, National Institutes of Health Stroke Scale (NIHSS), carotid intima media thickness; atherogenic index and glycemic status were also assessed. TM, copeptin, HMGB1, and LCN2 levels were significantly increased in overweight/obese AIS patients and in AIS patients with NIHSS score ≥ 7 when compared to other groups (p value=, ˂ 0.001*). Receiver operating characteristic (ROC) curve elaborated HMGB-1 and LCN2 as the best biomarker for diagnosis and prediction of AIS severity, respectively. Regression analysis avails LCN2 and TM as best biomarker for AIS severity predication. In conclusion, these results highlighted detrimental role of alarmin signaling with increased adaptive response to block this pathway through TM in addition to increased copeptin level as an acute damage marker and their tight relation to WC not to BMI in AIS which clarify the implication of central adiposity.

Keywords

Acute ischemic stroke (AIS) NIHSS score Carotid intima media thickness (CIMT) Thrombomodulin High mobility group box-1 (HMGB1) Lipocalin 2 (LCN) Toll-like receptor-4 (TLR4) 

Notes

Acknowledgements

We would like to thank Dr. Zaytoun H. (Radiology Department, Tanta University) for the radiological examinations.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The Ethical Committee of Tanta Faculty of Medicine approved this study (31649).

Supplementary material

10072_2018_3396_MOESM1_ESM.docx (295 kb)
ESM 1 (DOCX 295 kb)

References

  1. 1.
    Bonaventura A, Liberale L, Vecchié A et al (2016) Update on inflammatory biomarkers and treatments in ischemic stroke. Int J Mol Sci 17(12).  https://doi.org/10.3390/ijms17121967
  2. 2.
    Gu L, Huang J, Liang B, Chen Q, Xie J, Yang J, Yan Y, Tang Q (2018) TLR4 polymorphisms affect stroke risk and inflammatory response in Chinese ischemic stroke patients. Neurol Sci 39:127–133.  https://doi.org/10.1007/s10072-017-3151-y CrossRefPubMedGoogle Scholar
  3. 3.
    Petrovic-Djergovic D, Goonewardena SN, Pinsky DJ (2016) Inflammatory disequilibrium in stroke. Circ Res 119:142–158.  https://doi.org/10.1161/CIRCRESAHA.116.308022 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhu S, Li W, Ward MF, Sama A, Wang H (2010) High mobility group box 1 protein as a potential drug target for infection- and injury-elicited inflammation. Inflamm Allergy Drug Targets 9:60–72.  https://doi.org/10.2174/187152810791292872 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gunasekaran MK, Virama-Latchoumy AL, Girard AC, Planesse C, Guérin-Dubourg A, Ottosson L, Andersson U, Césari M, Roche R, Hoareau L (2016) TLR4-dependant pro-inflammatory effects of HMGB1 on human adipocyte. Adipocyte 5:384–388.  https://doi.org/10.1080/21623945.2016.1245818 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhang J, Zhang L, Zhang S, Yu Q, Xiong F, Huang K, Wang CY, Yang P (2017) HMGB1, an innate alarmin, plays a critical role in chronic inflammation of adipose tissue in obesity. Mol Cell Endocrinol 454:103–111.  https://doi.org/10.1016/jmce201706.012 CrossRefPubMedGoogle Scholar
  7. 7.
    Banjara M (2014) Lipocalin-2: a new regulator of non-pathogen-associated neuroinflammation. Int J Clin Exp Neurol 2:8–15.  https://doi.org/10.12691/ijcen-2-1-3. Google Scholar
  8. 8.
    Wenzel J, Assmann JC, Schwaninger M (2014) Thrombomodulin—a new target for treating stroke at the crossroad of coagulation and inflammation. Curr Med Chem 21:2025–2034.  https://doi.org/10.2174/0929867321666131228204839 CrossRefPubMedGoogle Scholar
  9. 9.
    Afsar B (2017) Pathophysiology of copeptin in kidney disease and hypertension. Clin Hypertens 23:13.  https://doi.org/10.1186/s40885-017-0068-y CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wendt M, Ebinger M, Kunz A, Rozanski M, Waldschmidt C, Weber JE, Winter B, Koch PM, Nolte CH, Hertel S, Ziera T, Audebert HJ, STEMO Consortium (2015) Copeptin levels in patients with acute ischemic stroke and stroke mimics. Stroke 46:2426–2431.  https://doi.org/10.1161/STROKEAHA.115.009877 CrossRefPubMedGoogle Scholar
  11. 11.
    Stroke--1989 (1989) Recommendations on stroke prevention, diagnosis, and therapy. Report of the WHO Task Force on Stroke and other Cerebrovascular Disorders. Stroke 20(10):1407–1431.  https://doi.org/10.1161/01.STR.20.10.1407 CrossRefGoogle Scholar
  12. 12.
    Kuczmarski RJ, Flegal KM (2000) Criteria for definition of overweight in transition: background and recommendations for the United States. Am J Clin Nutr 72:1074–1081CrossRefPubMedGoogle Scholar
  13. 13.
    Lean ME, Han TS, Morrison CE (1995) Waist circumference as a measure for indicating need for weight management. BMJ 311:158–161CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hacke W, Albers G, Al-Rawi Y et al (2005) The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 36(1):66–73.  https://doi.org/10.1161/01.STR.0000149938.08731.2c CrossRefPubMedGoogle Scholar
  15. 15.
    Zineldeen DH, Keshk WA, Ghazy AH et al Sucrose non-fermenting AMPK related kinase/pentraxin 3 and DNA damage axis: a gate way to cardiovascular disease in systemic lupus erythematosus among Egyptian patients. Ann Clin Biochem 201653(Pt 2):240–251.  https://doi.org/10.1177/0004563215578190
  16. 16.
    Abbott RD, Wilson PW, Kannel WB, Castelli WP (1988) High density lipoprotein cholesterol, total cholesterol screening, and myocardial infarction. The Framingham Study. Arteriosclerosis 8:207–211CrossRefPubMedGoogle Scholar
  17. 17.
    Strong K, Mathers C, Bonita R (2007) Preventing stroke: saving lives around the world. Lancet Neurol 6(2):182–187.  https://doi.org/10.1016/S1474-4422(07)70031-5 CrossRefPubMedGoogle Scholar
  18. 18.
    Karcher HS, Holzwarth R, Mueller HP, Ludolph AC, Huber R, Kassubek J, Pinkhardt EH (2013) Body fat distribution as a risk factor for cerebrovascular disease: an MRI-based body fat quantification study. Cerebrovasc Dis 35:341–348.  https://doi.org/10.1159/000348703 CrossRefPubMedGoogle Scholar
  19. 19.
    Lim S, Meigs JB (2014) Links between ectopic fat and vascular disease in humans. Arterioscler Thromb Vasc Biol 34:1820–1826.  https://doi.org/10.1161/ATVBAHA.114.303035 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Katan M, Fluri F, Morgenthaler NG, Schuetz P, Zweifel C, Bingisser R, Müller K, Meckel S, Gass A, Kappos L, Steck AJ, Engelter ST, Müller B, Christ-Crain M (2009) Copeptin: a novel, independent prognostic marker in patients with ischemic stroke. Ann Neurol 66:799–808.  https://doi.org/10.1002/ana.21783 CrossRefPubMedGoogle Scholar
  21. 21.
    Yatsuya H, Yamagishi K, North KE et al (2010) Associations of obesity measures with subtypes of ischemic stroke in the ARIC study. J Epidemiol 20(5):347–354.  https://doi.org/10.2188/jea.je20090186 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Muuronen AT, Taina M, Hedman M et al (2015) Increased visceral adipose tissue as a potential risk factor in patients with embolic stroke of undetermined source (ESUS). PLoS One 10(3):e0120598.  https://doi.org/10.1371/journal.pone.0120598 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zeljkovic A, Vekic J, Spasojevic-Kalimanovska V, Jelic-Ivanovic Z, Bogavac-Stanojevic N, Gulan B, Spasic S (2010) LDL and HDL subclasses in acute ischemic stroke: prediction of risk and short-term mortality. Atherosclerosis 210(2):548–554.  https://doi.org/10.1016/j.atherosclerosis.2009.11.040 CrossRefPubMedGoogle Scholar
  24. 24.
    Sujatha R, Kavitha S (2017) Atherogenic indices in stroke patients: a retrospective study. Iran J Neurol 16(2):78–82PubMedPubMedCentralGoogle Scholar
  25. 25.
    Haq S, Mathur M, Singh J et al (2017) Colour Doppler evaluation of extracranial carotid artery in patients presenting with acute ischemic stroke and correlation with various risk factors. J Clin Diagn Res 11(3):TC01–TC05.  https://doi.org/10.7860/JCDR/2017/25493.9541 PubMedPubMedCentralGoogle Scholar
  26. 26.
    Faraco G, Fossati S, Bianchi ME, Patrone M, Pedrazzi M, Sparatore B, Moroni F, Chiarugi A (2007) High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. J Neurochem 103:590–603.  https://doi.org/10.1111/j.1471-4159.2007.04788.x CrossRefPubMedGoogle Scholar
  27. 27.
    Wu D, Sheu JS, Liu HC, Yuan RY, Yu JM, Sheu JJ, Hung CH, Hu CJ (2012) Increase of toll-like receptor 4 but decrease of interleukin-8 mRNA expression among ischemic stroke patients under aspirin treatment. Clin Biochem 45:1316–1319.  https://doi.org/10.1016/j.clinbiochem.2012.04.022 CrossRefPubMedGoogle Scholar
  28. 28.
    Zhao Y, Li G, Li Y et al (2017) Knockdown of Tlr4 in the arcuate nucleus improves obesity related metabolic disorders. Sci Rep 7:7441.  https://doi.org/10.1038/s41598-017-07858-6 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kalinina N, Agrotis A, Antropova Y et al (2004) Increased expression of the DNA-binding cytokine HMGB1 in human atherosclerotic lesions: role of activated macrophages and cytokines. Arterioscler Thromb Vasc Biol 24:2320–2325.  https://doi.org/10.1161/01.ATV.0000145573.36113.8a CrossRefPubMedGoogle Scholar
  30. 30.
    Yao HC, Zhao AP, Han QF et al (2013) Correlation between serum high-mobility group box-1 levels and high-sensitivity C-reactive protein and troponin I in patients with coronary artery disease. Exp Ther Med 6:121–124.  https://doi.org/10.3892/etm.2013.1095 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Suk K (2016) Lipocalin-2 as a therapeutic target for brain injury: an astrocentric perspective. Prog Neurobiol 144:158–172.  https://doi.org/10.1016/j.pneurobio.2016.08.001 CrossRefPubMedGoogle Scholar
  32. 32.
    Nam Y, Kim JH, Seo M, Kim JH, Jin M, Jeon S, Seo JW, Lee WH, Bing SJ, Jee Y, Lee WK, Park DH, Kook H, Suk K (2014) Lipocalin-2 protein deficiency ameliorates experimental autoimmune encephalomyelitis: the pathogenic role of lipocalin-2 in the central nervous system and peripheral lymphoid tissues. J Biol Chem 289:16773–16789.  https://doi.org/10.1074/jbc.M113.542282 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhao P, Stephens JM (2013) STAT1, NF-κB and ERKs play a role in the induction of lipocalin-2 expression in adipocytes. Mol Metab 2:161–170.  https://doi.org/10.1016/j.molmet.2013.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jin M, Kim JH, Jang E, Lee YM, Han HS, Woo DK, Park DH, Kook H, Suk K (2014) Lipocalin-2 deficiency attenuates neuroinflammation and brain injury after transient middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 34:1306–1314.  https://doi.org/10.1038/jcbfm.2014.83 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Song E, Jahng JW, Chong LP, Sung HK, Han M, Luo C, Wu D, Boo S, Hinz B, Cooper MA, Robertson AA, Berger T, Mak TW, George I, Schulze PC, Wang Y, Xu A, Sweeney G (2017) Lipocalin-2 induces NLRP3 inflammasome activation via HMGB1 induced TLR4 signaling in heart tissue of mice under pressure overload challenge. Am J Transl Res 9:2723–2735PubMedPubMedCentralGoogle Scholar
  36. 36.
    Gerdes VE, Kremer Hovinga JA, Ten Cate H et al (2004) Soluble thrombomodulin in patients with established atherosclerosis. J Thromb Haemost 2:200–201.  https://doi.org/10.1111/j.1538-7836.2004.0562f.x CrossRefPubMedGoogle Scholar
  37. 37.
    Dharmasaroja P, Dharmasaroja PA, Sobhon P (2012) Increased plasma soluble thrombomodulin levels in cardioembolic stroke. Clin Appl Thromb Hemost 18:289–293.  https://doi.org/10.1177/1076029611432744 CrossRefPubMedGoogle Scholar
  38. 38.
    Meyer AA, Kundt G, Steiner M, Schuff-Werner P, Kienast W (2006) Impaired flow-mediated vasodilation, carotid artery intima-media thickening, and elevated endothelial plasma markers in obese children: the impact of cardiovascular risk factors. Pediatrics 117:1560–1567.  https://doi.org/10.1542/peds.2005-2140 CrossRefPubMedGoogle Scholar
  39. 39.
    Pilarska E, Lemka M, Bakowska A (2010) Thrombomodulin and antibeta2-glycoprotein I in stroke in children. Med Sci Monit 16:CR348–CR351PubMedGoogle Scholar
  40. 40.
    Jochberger S, Mayr VD, Luckner G, Wenzel V, Ulmer H, Schmid S, Knotzer H, Pajk W, Hasibeder W, Friesenecker B, Mayr AJ, Dünser MW (2006) Serum vasopressin concentrations in critically ill patients. Crit Care Med 34:293–299.  https://doi.org/10.1097/01.ccm.0000198528.56397.4f CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang P, Wu X, Li G, Sun H, Shi J (2017) Prognostic role of copeptin with all-cause mortality after heart failure: a systematic review and meta-analysis. Ther Clin Risk Manag 13:49–58.  https://doi.org/10.2147/TCRM.S124689 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Vakili A, Kataoka H, Plesnila N (2005) Role of arginine vasopressin V1 and V2 receptors for brain damage after transient focal cerebral ischemia. J Cereb Blood Flow Metab 25:1012–1019.  https://doi.org/10.1038/sj.jcbfm.9600097 CrossRefPubMedGoogle Scholar
  43. 43.
    Vintilă M, Gheorghiu ML, Caragheorgheopol A, Baculescu N, Lichiardopol C, Badiu C, Coculescu M, Grigorescu F, Poiană C (2016) Increased copeptin levels in metabolic syndrome from a Romanian population. J Med Life 9:353–357PubMedPubMedCentralGoogle Scholar
  44. 44.
    Perovic E, Mrdjen A, Harapin M, Tesija Kuna A, Simundic AM (2017) Diagnostic and prognostic role of resistin and copeptin in acute ischemic stroke. Top Stroke Rehabil 24:1–5.  https://doi.org/10.1080/10749357.2017.1367454 CrossRefGoogle Scholar
  45. 45.
    Tang WZ, Wang XB, Li HT, Dong M, Ji X (2017) Serum copeptin predicts severity and recurrent stroke in ischemic stroke patients. Neurotox Res 32:420–425.  https://doi.org/10.1007/s12640-017-9754-5 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical Biochemistry & Molecular Biology, Faculty of MedicineTanta UniversityTantaEgypt
  2. 2.Department of Neuropsychiatry, Faculty of MedicineTanta UniversityTantaEgypt

Personalised recommendations