Advertisement

Neurological Sciences

, Volume 39, Issue 4, pp 679–689 | Cite as

Association between CLU gene rs11136000 polymorphism and Alzheimer’s disease: an updated meta-analysis

  • Ruixia Zhu
  • Xu Liu
  • Zhiyi He
Original Article
  • 134 Downloads

Abstract

Large-scale genome-wide association studies (GWAS) identified that the single nucleotide polymorphism rs11136000 in Clusterin (CLU) gene was associated with risk of Alzheimer’s disease (AD) in Caucasian ancestry. However, recent studies reported either a weak association or no association between rs11136000 polymorphism and AD in Asian populations. Therefore, we performed a meta-analysis to explore whether rs11136000 polymorphism is associated with susceptibility to AD in Asian populations. A total of 17 articles including 26 studies with 19,829 cases and 30,900 controls, which were identified by searching PubMed, MEDLINE, and AlzGene up to Nov 2016, were collected for this meta-analysis. The significant association between rs11136000 and AD in the pooled population was found under all the models. In subgroup analysis, we identified significant association in Asian population under the additive mode (OR = 0.90, 95% CI = 0.85–0.96) but not in the recessive model (OR = 0.80, 95% CI = 0.53–1.21) and the dominant model (OR = 0.94, 95% CI = 0.86–1.03). Our analysis further supports previous findings that the rs11136000 polymorphism C allele is associated with AD susceptibility. To our knowledge, this is the new largest meta-analysis to access to the association of CLU rs11136000 polymorphism with AD risk.

Keywords

Alzheimer’s disease Meta-analysis CLU rs11136000 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Pedersen NL (2010) Reaching the limits of genome-wide significance in Alzheimer disease: back to the environment. JAMA 303(18):1864–1865.  https://doi.org/10.1001/jama.2010.609 CrossRefPubMedGoogle Scholar
  2. 2.
    Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, Bis JC, Smith AV, Carassquillo MM, Lambert JC, Harold D, Schrijvers EM, Ramirez-Lorca R, Debette S, Longstreth WT Jr, Janssens AC, Pankratz VS, Dartigues JF, Hollingworth P, Aspelund T, Hernandez I, Beiser A, Kuller LH, Koudstaal PJ, Dickson DW, Tzourio C, Abraham R, Antunez C, Du Y, Rotter JI, Aulchenko YS, Harris TB, Petersen RC, Berr C, Owen MJ, Lopez-Arrieta J, Varadarajan BN, Becker JT, Rivadeneira F, Nalls MA, Graff-Radford NR, Campion D, Auerbach S, Rice K, Hofman A, Jonsson PV, Schmidt H, Lathrop M, Mosley TH, Au R, Psaty BM, Uitterlinden AG, Farrer LA, Lumley T, Ruiz A, Williams J, Amouyel P, Younkin SG, Wolf PA, Launer LJ, Lopez OL, van Duijn CM, Breteler MM, CHARGE Consortium., GERAD1 Consortium., EADI1 Consortium (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303(18):1832–1840.  https://doi.org/10.1001/jama.2010.574 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR, de Jager PL, Evans D, Schneider JA, Carrasquillo MM, Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JSK, Nowotny P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, Green RC, Rogaeva E, George-Hyslop PS, Arnold SE, Barber R, Beach T, Bigio EH, Bowen JD, Boxer A, Burke JR, Cairns NJ, Carlson CS, Carney RM, Carroll SL, Chui HC, Clark DG, Corneveaux J, Cotman CW, Cummings JL, DeCarli C, DeKosky ST, Diaz-Arrastia R, Dick M, Dickson DW, Ellis WG, Faber KM, Fallon KB, Farlow MR, Ferris S, Frosch MP, Galasko DR, Ganguli M, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Gilman S, Giordani B, Glass JD, Growdon JH, Hamilton RL, Harrell LE, Head E, Honig LS, Hulette CM, Hyman BT, Jicha GA, Jin LW, Johnson N, Karlawish J, Karydas A, Kaye JA, Kim R, Koo EH, Kowall NW, Lah JJ, Levey AI, Lieberman AP, Lopez OL, Mack WJ, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Parisi JE, Perl DP, Peskind E, Petersen RC, Poon WW, Quinn JF, Rajbhandary RA, Raskind M, Reisberg B, Ringman JM, Roberson ED, Rosenberg RN, Sano M, Schneider LS, Seeley W, Shelanski ML, Slifer MA, Smith CD, Sonnen JA, Spina S, Stern RA, Tanzi RE, Trojanowski JQ, Troncoso JC, van Deerlin VM, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Williamson J, Woltjer RL, Cantwell LB, Dombroski BA, Beekly D, Lunetta KL, Martin ER, Kamboh MI, Saykin AJ, Reiman EM, Bennett DA, Morris JC, Montine TJ, Goate AM, Blacker D, Tsuang DW, Hakonarson H, Kukull WA, Foroud TM, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43(5):436–441.  https://doi.org/10.1038/ng.801 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hollingworth P, Harold D, Sims R et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43(5):429–435.  https://doi.org/10.1038/ng.803 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lambert JC, Heath S, Even G et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41(10):1094–1099.  https://doi.org/10.1038/ng.439 CrossRefPubMedGoogle Scholar
  6. 6.
    Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schürmann B, Heun R, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frölich L, Hampel H, Hüll M, Rujescu D, Goate AM, Kauwe JSK, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, de Deyn PP, van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Mühleisen TW, Nöthen MM, Moebus S, Jöckel KH, Klopp N, Wichmann HE, Carrasquillo MM, Pankratz VS, Younkin SG, Holmans PA, O'Donovan M, Owen MJ, Williams J (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41(10):1088–1093.  https://doi.org/10.1038/ng.440 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    DeMattos RB, O’Dell MA, Parsadanian M et al (2002) Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of alzheimer’s disease. Proc Natl Acad Sci U S A 99(16):10843–10848.  https://doi.org/10.1073/pnas.162228299 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schrijvers EM, Koudstaal PJ, Hofman A, Breteler MM (2011) Plasma clusterin and the risk of Alzheimer disease. JAMA 305(13):1322–1326.  https://doi.org/10.1001/jama.2011.381 CrossRefPubMedGoogle Scholar
  9. 9.
    Nilselid AM, Davidsson P, Nagga K et al (2006) Clusterin in cerebrospinal fluid: analysis of carbohydrates and quantification of native and glycosylated forms. Neurochem Int 48:718e72CrossRefGoogle Scholar
  10. 10.
    Thambisetty M, Beason-Held LL, An Y, Kraut M, Nalls M, Hernandez DG, Singleton AB, Zonderman AB, Ferrucci L, Lovestone S, Resnick SM (2013) Alzheimer risk variant CLU and brain function during aging. Biol Psychiatry 73(5):399–405.  https://doi.org/10.1016/j.biopsych.2012.05.026 CrossRefPubMedGoogle Scholar
  11. 11.
    Ohara T, Ninomiya T, Hirakawa Y, Ashikawa K, Monji A, Kiyohara Y, Kanba S, Kubo M (2012) Association study of susceptibility genes for late-onset Alzheimer’s disease in the Japanese population. Psychiatr Genet 22(6):290–293.  https://doi.org/10.1097/YPG.0b013e3283586215 CrossRefPubMedGoogle Scholar
  12. 12.
    Lin YL, Chen SY, Lai LC, Chen JH, Yang SY, Huang YL, Chen TF, Sun Y, Wen LL, Yip PK, Chu YM, Chen WJ, Chen YC (2012) Genetic polymorphisms of clusterin gene are associated with a decreased risk of Alzheimer’s disease. Eur J Epidemiol 27(1):73–75.  https://doi.org/10.1007/s10654-012-9650-5 CrossRefGoogle Scholar
  13. 13.
    Miyashita A, Koike A, Jun G, Wang LS, Takahashi S, Matsubara E, Kawarabayashi T, Shoji M, Tomita N, Arai H, Asada T, Harigaya Y, Ikeda M, Amari M, Hanyu H, Higuchi S, Ikeuchi T, Nishizawa M, Suga M, Kawase Y, Akatsu H, Kosaka K, Yamamoto T, Imagawa M, Hamaguchi T, Yamada M, Moriaha T, Takeda M, Takao T, Nakata K, Fujisawa Y, Sasaki K, Watanabe K, Nakashima K, Urakami K, Ooya T, Takahashi M, Yuzuriha T, Serikawa K, Yoshimoto S, Nakagawa R, Kim JW, Ki CS, Won HH, Na DL, Seo SW, Mook-Jung I, The Alzheimer Disease Genetics Consortium, St. George-Hyslop P, Mayeux R, Haines JL, Pericak-Vance MA, Yoshida M, Nishida N, Tokunaga K, Yamamoto K, Tsuji S, Kanazawa I, Ihara Y, Schellenberg GD, Farrer LA, Kuwano R (2013) SORL1 is genetically associated with late-onset Alzheimer’s disease in Japanese, Koreans and Caucasians. PLoS One 8(4):e58618.  https://doi.org/10.1371/journal.pone.0058618 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ma JF, Liu LH, Zhang Y et al (2011) Association study of clusterin polymorphism rs11136000 with late onset Alzheimer’s disease in Chinese Han population. Am J Alzheimers Dis Dement 26(8):627–630.  https://doi.org/10.1177/1533317511432735 CrossRefGoogle Scholar
  15. 15.
    Chen LH, Kao PY, Fan YH et al (2012) Polymorphisms of CR1, CLU and PICALM confer susceptibility of Alzheimer’s disease in a southern Chinese population. Neurobiol Aging 33(1):e211–e217CrossRefGoogle Scholar
  16. 16.
    Yu JT, Li L, Zhu QX, Zhang Q, Zhang W, Wu ZC, Guan J, Tan L (2010) Implication of CLU gene polymorphisms in Chinese patients with Alzheimer’s disease. Clin Chim Acta 411(19–20):1516–1519.  https://doi.org/10.1016/j.cca.2010.06.013 CrossRefPubMedGoogle Scholar
  17. 17.
    Wang HZ, Bi R, Hu QX, Xiang Q, Zhang C, Zhang DF, Zhang W, Ma X, Guo W, Deng W, Zhao L, Ni P, Li M, Fang Y, Li T, Yao YG (2016) Validating GWAS identified risk loci for Alzheimer’s disease in Han Chinese populations. Mol Neurobiol 53(1):379–390.  https://doi.org/10.1007/s12035-014-9015-z CrossRefPubMedGoogle Scholar
  18. 18.
    Lu SJ, Li HL, Sun YM et al (2014) Clusterin variants are not associated with southern Chinese patients with Alzheimer’s disease. Neurobiol Aging 35(2656):e2659–e2611Google Scholar
  19. 19.
    Chung SJ, Lee JH, Kim SY, You S, Kim MJ, Lee JY, Koh J (2013) Association of GWAS top hits with late-onset Alzheimer disease in Korean population. Alzheimer Dis Assoc Disord 27(3):250–257.  https://doi.org/10.1097/WAD.0b013e31826d7281 CrossRefPubMedGoogle Scholar
  20. 20.
    Yu JT, Ma XY, Wang YL (2013) Genetic variation in clusterin gene and Alzheimer’s disease risk in Han Chinese. Neurobiol Aging 34(7):1921 e1917–1921 e1923CrossRefGoogle Scholar
  21. 21.
    Komatsu M, Shibata N, Kuerban B et al (2011) Genetic association between clusterin polymorphisms and Alzheimer’s disease in a Japanese population. Psychogeriatrics 11(1):14–18.  https://doi.org/10.1111/j.1479-8301.2010.00346.x CrossRefPubMedGoogle Scholar
  22. 22.
    Ebbert MT, Boehme KL, Wadsworth ME et al (2015) Interaction between variants in CLU and MS4A4E modulates Alzheimer’s disease risk. Alzheimers Dement 12(2):121–129.  https://doi.org/10.1016/j.jalz.2015.08.163 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Carrasquillo MM, Crook JE, Pedraza O, Thomas CS, Pankratz VS, Allen M, Nguyen T, Malphrus KG, Ma L, Bisceglio GD, Roberts RO, Lucas JA, Smith GE, Ivnik RJ, Machulda MM, Graff-Radford NR, Petersen RC, Younkin SG, Ertekin-Taner N (2015) Late-onset Alzheimer’s risk variants in memory decline, incident mild cognitive impairment, and Alzheimer’s disease. Neurobiol Aging 36(1):60–67.  https://doi.org/10.1016/j.neurobiolaging.2014.07.042 CrossRefPubMedGoogle Scholar
  24. 24.
    Rodríguez-Rodríguez E, Sánchez-Juan P, Vázquez-Higuera JL, Mateo I, Pozueta A, Berciano J, Cervantes S, Alcolea D, Martínez-Lage P, Clarimón J, Lleó A, Pastor P, Combarros O (2013) Genetic risk score predicting accelerated progression from mild cognitive impairment to Alzheimer’s disease. J Neural Transm (Vienna) 120(5):807–812.  https://doi.org/10.1007/s00702-012-0920-x CrossRefGoogle Scholar
  25. 25.
    Elias-Sonnenschein LS, Helisalmi S, Natunen T, Hall A, Paajanen T, Herukka SK, Laitinen M, Remes AM, Koivisto AM, Mattila KM, Lehtimäki T, Verhey FRJ, Visser PJ, Soininen H, Hiltunen M (2013) Genetic loci associated with Alzheimer’s disease and cerebrospinal fluid biomarkers in a Finnish case-control cohort. PLoS One 8(4):e59676.  https://doi.org/10.1371/journal.pone.0059676 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Liu G, Wang H, Liu et al (2014) The CLU gene rs11136000 variant is significantly associated with Alzheimer’s disease in Caucasian and Asian populations. NeuroMolecular Med 16(1):52–60.  https://doi.org/10.1007/s12017-013-8250-1 CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang S, Li X, Ma G, Jiang Y, Liao M, Feng R, Zhang L, Liu J, Wang G, Zhao B, Jiang Q, Li K, Liu G (2016) CLU rs9331888 polymorphism contributes to Alzheimer’s disease susceptibility in Caucasian but not east Asian populations. Mol Neurobiol 53(3):1446–1451.  https://doi.org/10.1007/s12035-015-9098-1 CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang S, Zhang D, Jiang Y, Wu L, Shang H, Liu J, Feng R, Liao M, Zhang L, Liu Y, Liu G, Li K (2015) CLU rs2279590 polymorphism contributes to Alzheimer’s disease susceptibility in Caucasian and Asian populations. J Neural Transm (Vienna) 122(3):433–439.  https://doi.org/10.1007/s00702-014-1260-9 CrossRefGoogle Scholar
  29. 29.
    Carrasquillo MM, Belbin O, Hunter TA, Ma L, Bisceglio GD, Zou F, Crook JE, Pankratz VS, Dickson DW, Graff-Radford NR, Petersen RC, Morgan K, Younkin SG (2010) Replication of CLU, CR1, and PICALM associations with Alzheimer’s disease. Arch Neurol 67(8):961–964.  https://doi.org/10.1001/archneurol.2010.147 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Giedraitis V, Kilander L, Degerman-Gunnarsson M, Sundelöf J, Axelsson T, Syvänen AC, Lannfelt L, Glaser A (2009) Genetic analysis of Alzheimer’s disease in the Uppsala longitudinal study of adult men. Dement Geriatr Cogn Disord 27(1):59–68.  https://doi.org/10.1159/000191203 CrossRefPubMedGoogle Scholar
  31. 31.
    Golenkina SA, Gol’tsov A, Kuznetsova IL et al (2010) Analysis of clustering gene (CLU/APOJ) polymorphism in Alzheimer’s disease patients and in normal cohorts from Russian populations. Mol Biol 44(4):620–626CrossRefGoogle Scholar
  32. 32.
    Kamboh MI, Minster RL, Demirci FY, Ganguli M, DeKosky ST, Lopez OL, Barmada MM (2012) Association of CLU and PICALM variants with Alzheimer’s disease. Neurobiol Aging 33(3):518–521.  https://doi.org/10.1016/j.neurobiolaging.2010.04.015 CrossRefPubMedGoogle Scholar
  33. 33.
    Alaylıoğlu M, Gezen-Ak D, Dursun E, Bilgiç B, Hanağası H, Ertan T, Gürvit H, Emre M, Eker E, Uysal Ö, Yılmazer S (2016) The association between Clusterin and APOE polymorphisms and late-onset Alzheimer disease in a Turkish cohort. Geriatr Psychiatry Neurol 29(4):221–226.  https://doi.org/10.1177/0891988716640373 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyThe First Affiliated Hospital of China Medical UniversityShenyangChina

Personalised recommendations