Neurological Sciences

, Volume 38, Issue 6, pp 1093–1099 | Cite as

Myxovirus resistance protein A (MxA) polymorphism is associated with IFNβ response in Iranian multiple sclerosis patients

  • Arezou Sayad
  • Soudeh Ghafouri-Fard
  • Mir Davood Omrani
  • Rezvan Noroozi
  • Mohammad TaheriEmail author
Original Article


Multiple sclerosis (MS) is a heterogeneous immune-related demyelinating disorder of central nervous system with several genetic and environmental factors contributing in its pathogenesis or patients’ response to therapies. Myxovirus resistance protein A (MxA) is among the genes which are induced by IFNβ and are involved in the MS pathogenesis and/or response to IFNβ. In the present case-control study, we evaluated the association between three SNPs at nt −123 (A or C, rs17000900), nt −88 (G or T, rs2071430), and nt +20 (A or C, rs464138) and MS risk as well as treatment response in a population of Iranian MS patients including 146 IFNβ responders and 85 non-responders as well as 180 healthy controls. The AGA (−123, −88, +20) haplotype was more frequent in controls compared with MS cases (P = 0.038, OR (95% CI) = 1.77 (1.03–3.02)). Of particular note, the frequency of rs464138 AA genotype was significantly higher in responders compared with non-responders. However, the allele and genotype frequencies of other SNPs were not significantly different among patient subtypes or between patients and controls. Besides, we have demonstrated that CGC, ATA, and AGA (−123, −88, +20) haplotypes were significantly associated with IFNβ response in MS patients. As SNPs on MxA promoter region might participate in MS patients’ response to IFNβ, prior patients genotyping may increase the rate of responsiveness and help in individualized selection of treatment options.


Multiple sclerosis MxA Polymorphism 



This research was supported by department of medical genetics of Shahid Beheshti University of medical science of Iran. Grant number: 11186.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hamedani SY, Taheri M, Omrani MD, Sajjadi E, Mazdeh M, Panah AST, Sayad A (2016) Up regulation of MMP9 gene expression in female patients with multiple sclerosis. Hum Antibodies (Preprint):1–6Google Scholar
  2. 2.
    Etemadifar M, Nourian SM, Akbari M, Abtahi SH, Nasri P, Fereidan-Esfahani M (2015) The distinctive contrast of multiple sclerosis epidemiology between Persians and Armenian minority community of Isfahan city, Iran. Neurol Sci 36(4):657–658. doi: 10.1007/s10072-014-2013-0 CrossRefPubMedGoogle Scholar
  3. 3.
    Lublin FD (2014) New multiple sclerosis phenotypic classification. Eur Neurol 72(Suppl. 1):1–5CrossRefPubMedGoogle Scholar
  4. 4.
    Bertolotto A, Capobianco M, Amato MP, Capello E, Capra R, Centonze D, Di Ioia M, Gallo A, Grimaldi L, Imberti L, Lugaresi A, Mancinelli C, Marrosu MG, Moiola L, Montanari E, Romano S, Musu L, Paolicelli D, Patti F, Pozzilli C, Rossi S, Salvetti M, Tedeschi G, Tola MR, Trojano M, Zaffaroni M, Malucchi S (2014) Guidelines on the clinical use for the detection of neutralizing antibodies (NAbs) to IFN beta in multiple sclerosis therapy: report from the Italian multiple sclerosis study group (vol 35, pg 307, 2014). Neurol Sci 35(10):1645–1646. doi: 10.1007/s10072-014-1649-0 CrossRefGoogle Scholar
  5. 5.
    Esposti LD, Piccinni C, Sangiorgi D, Perrone V, Aledda L, Marrosu MG, Lombardo F (2017) Changes in first-line injectable disease-modifying therapy for multiple sclerosis: predictors of non-adherence, switching, discontinuation, and interruption of drugs. Neurol Sci. doi: 10.1007/s10072-016-2806-4 PubMedGoogle Scholar
  6. 6.
    Bertolotto A, Granieri L, Marnetto F, Valentino P, Sala A, Capobianco M, Malucchi S, Di Sapio A, Malentacchi M, Matta M, Caldano M (2015) Biological monitoring of IFN-beta therapy in multiple sclerosis. Cytokine Growth F R 26(2):241–248. doi: 10.1016/j.cytogfr.2014.12.002 CrossRefGoogle Scholar
  7. 7.
    Mazdeh M, Taheri M, Sayad A, Bahram S, Omrani MD, Movafagh A, Inoko H, Akbari MT, Noroozi R, Hajilooi M (2016) HLA genes as modifiers of response to IFN-β-1a therapy in relapsing-remitting multiple sclerosis. Pharmacogenomics 17(5):489–498CrossRefPubMedGoogle Scholar
  8. 8.
    Bertolotto A (2015) Evaluation of the impact of neutralizing antibodies on IFNβ response. Clin Chim Acta 449:31–36CrossRefPubMedGoogle Scholar
  9. 9.
    Bertolotto A, Gilli F, Sala A, Audano L, Castello A, Magliola U, Melis F, Giordana MT (2001) Evaluation of bioavailability of three types of IFNβ in multiple sclerosis patients by a new quantitative-competitive-PCR method for MxA quantification. J Immunol Methods 256(1):141–152CrossRefPubMedGoogle Scholar
  10. 10.
    Furuyama H, Chiba S, Okabayashi T, Yokota S, Nonaka M, Imai T, Fujii N, Matsumoto H (2006) Single nucleotide polymorphisms and functional analysis of MxA promoter region in multiple sclerosis. J Neurol Sci 249(2):153–157. doi: 10.1016/j.jns.2006.06.012 CrossRefPubMedGoogle Scholar
  11. 11.
    Bertolotto A, Granieri L, Marnetto F, Valentino P, Sala A, Capobianco M, Malucchi S, Di Sapio A, Malentacchi M, Matta M (2015) Biological monitoring of IFN-β therapy in multiple sclerosis. Cytokine Growth F R 26(2):241–248CrossRefGoogle Scholar
  12. 12.
    Al-Masri A, Heidenreich F, Walter G (2009) Interferon-induced mx proteins in brain tissue of multiple sclerosis patients. Eur J Neurol 16(6):721–726CrossRefPubMedGoogle Scholar
  13. 13.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302. doi: 10.1002/ana.22366 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cunningham S, Graham C, Hutchinson M, Droogan A, O’Rourke K, Patterson C, McDonnell G, Hawkins S, Vandenbroeck K (2005) Pharmacogenomics of responsiveness to interferon IFN-beta treatment in multiple sclerosis: a genetic screen of 100 type I interferon-inducible genes. Clin Pharmacol Ther 78(6):635–646. doi: 10.1016/j.clpt.2005.08.018 CrossRefPubMedGoogle Scholar
  15. 15.
    Suzuki F, Arase Y, Suzuki Y, Tsubota A, Akuta N, Hosaka T, Someya T, Kobayashi M, Saitoh S, Ikeda K, Kobayashi M, Matsuda M, Takagi K, Satoh J, Kumada H (2004) Single nucleotide polymorphism of the MxA gene promoter influences the response to interferon monotherapy in patients with hepatitis C viral infection. J Viral Hepat 11(3):271–276. doi: 10.1111/j.1365-2893.2004.00509.x CrossRefPubMedGoogle Scholar
  16. 16.
    Noguchi S, Hijikata M, Hamano E, Matsushita I, Ito H, Ohashi J, Nagase T, Keicho N (2013) MxA transcripts with distinct first exons and modulation of gene expression levels by single-nucleotide polymorphisms in human bronchial epithelial cells. Immunogenetics 65(2):107–114. doi: 10.1007/s00251-012-0663-8 CrossRefPubMedGoogle Scholar
  17. 17.
    Duc TTT, Desmecht D, Cornet A (2013) Functional characterization of new allelic polymorphisms identified in the promoter region of the human MxA gene. Int J Immunogenet 40(4):316–319. doi: 10.1111/j.1744-313X.2012.01153.x CrossRefGoogle Scholar
  18. 18.
    Weinstock-Guttman B, Tamano-Blanco M, Bhasi K, Zivadinov R, Ramanathan M (2007) Pharmacogenetics of MXA SNPs in interferon-beta treated multiple sclerosis patients. J Neuroimmunol 182(1–2):236–239. doi: 10.1016/j.jneuroim.2006.10.011 CrossRefPubMedGoogle Scholar
  19. 19.
    Hijikata M, Mishiro S, Miyamoto C, Furuichi Y, Hashimoto M, Ohta Y (2001) Genetic polymorphism of the MxA gene promoter and interferon responsiveness of hepatitis C patients: revisited by analyzing two SNP sites (−123 and -88) in vivo and in vitro. Intervirology 44(6):379–382. doi: 10.1159/000050075 CrossRefPubMedGoogle Scholar
  20. 20.
    Gniadek P, Aktas O, Wandinger KP, Bellmann-Strobl J, Wengert O, Weber A, von Wussow P, Obert HJ, Zipp F (2003) Systemic IFN-beta treatment induces apoptosis of peripheral immune cells in MS patients. J Neuroimmunol 137(1–2):187–196. doi: 10.1016/S0165-5728(03)00074-2 CrossRefPubMedGoogle Scholar
  21. 21.
    Ward LD, Kellis M (2016) HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res 44(D1):D877–D881. doi: 10.1093/nar/gkv1340 CrossRefPubMedGoogle Scholar
  22. 22.
    Abrajano JJ, Qureshi IA, Gokhan S, Zheng DY, Bergman A, Mehler MF (2009) REST and CoREST modulate neuronal subtype specification, maturation and maintenance. PLoS One 4(12):e7936. doi: 10.1371/journal.pone.0007936 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Liggett T, Melnikov A, Tilwalli S, Yi QL, Chen HY, Replogle C, Feng X, Reder A, Stefoski D, Balabanov R, Levenson V (2010) Methylation patterns of cell-free plasma DNA in relapsing-remitting multiple sclerosis. J Neurol Sci 290(1–2):16–21. doi: 10.1016/j.jns.2009.12.018 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Graumann U, Reynolds R, Steck AJ, Schaeren-Wiemers N (2003) Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult. Brain Pathol 13(4):554–573CrossRefPubMedGoogle Scholar
  25. 25.
    Ghosh AK, Bhattacharyya S, Lafyatis R, Farina G, Yu J, Thimmapaya B, Wei J, Varga J (2013) p300 is elevated in systemic sclerosis and its expression is positively regulated by TGF-β: epigenetic feed-forward amplification of fibrosis. J Investig Dermatol 133(5):1302–1310CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rahmani Z, Blouin JL, Creaugoldberg N, Watkins PC, Mattei JF, Poissonnier M, Prieur M, Chettouh Z, Nicole A, Aurias A, Sinet PM, Delabar JM (1989) Critical role of the D21s55 region on chromosome-21 in the pathogenesis of down syndrome. Proc Natl Acad Sci USA 86(15):5958–5962. doi: 10.1073/pnas.86.15.5958 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Horisberger MA (1995) Interferons, mx-genes, and resistance to influenza-virus. Am J Resp Crit Care 152(4):S67–S71CrossRefGoogle Scholar
  28. 28.
    Weilbach FX, Toyka KV (2002) Does Down’s syndrome protect against multiple sclerosis? Eur Neurol 47(1):52–55CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2017

Authors and Affiliations

  • Arezou Sayad
    • 1
  • Soudeh Ghafouri-Fard
    • 1
  • Mir Davood Omrani
    • 1
    • 2
  • Rezvan Noroozi
    • 1
  • Mohammad Taheri
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Medical Genetics, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Urogenital Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
  3. 3.Department of Medical Genetics, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations