The effect of Wi-Fi electromagnetic waves in unimodal and multimodal object recognition tasks in male rats

Abstract

Wireless internet (Wi-Fi) electromagnetic waves (2.45 GHz) have widespread usage almost everywhere, especially in our homes. Considering the recent reports about some hazardous effects of Wi-Fi signals on the nervous system, this study aimed to investigate the effect of 2.4 GHz Wi-Fi radiation on multisensory integration in rats. This experimental study was done on 80 male Wistar rats that were allocated into exposure and sham groups. Wi-Fi exposure to 2.4 GHz microwaves [in Service Set Identifier mode (23.6 dBm and 3% for power and duty cycle, respectively)] was done for 30 days (12 h/day). Cross-modal visual-tactile object recognition (CMOR) task was performed by four variations of spontaneous object recognition (SOR) test including standard SOR, tactile SOR, visual SOR, and CMOR tests. A discrimination ratio was calculated to assess the preference of animal to the novel object. The expression levels of M1 and GAT1 mRNA in the hippocampus were assessed by quantitative real-time RT-PCR. Results demonstrated that rats in Wi-Fi exposure groups could not discriminate significantly between the novel and familiar objects in any of the standard SOR, tactile SOR, visual SOR, and CMOR tests. The expression of M1 receptors increased following Wi-Fi exposure. In conclusion, results of this study showed that chronic exposure to Wi-Fi electromagnetic waves might impair both unimodal and cross-modal encoding of information.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Watson R (2011) Radiation fears prompt possible restrictions on Wi-Fi and mobile phone use in schools. BMJ (Clin Res Ed) 342:d3428. doi:10.1136/bmj.d3428

    Article  Google Scholar 

  2. 2.

    Dasdag S, Tas M, Akdag MZ, Yegin K (2015) Effect of long-term exposure of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on testes functions. Electromagn Biol Med 34(1):37–42. doi:10.3109/15368378.2013.869752

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Naziroglu M, Yuksel M, Kose SA, Ozkaya MO (2013) Recent reports of Wi-Fi and mobile phone-induced radiation on oxidative stress and reproductive signaling pathways in females and males. J Membr Biol 246(12):869–875. doi:10.1007/s00232-013-9597-9

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Shahin S, Mishra V, Singh SP, Chaturvedi CM (2014) 2.45-GHz microwave irradiation adversely affects reproductive function in male mouse, Mus musculus by inducing oxidative and nitrosative stress. Free Radic Res 48(5):511–525. doi:10.3109/10715762.2014.888717

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Naziroglu M, Celik O, Ozgul C, Cig B, Dogan S, Bal R, Gumral N, Rodriguez AB, Pariente JA (2012) Melatonin modulates wireless (2.45 GHz)-induced oxidative injury through TRPM2 and voltage gated Ca(2+) channels in brain and dorsal root ganglion in rat. Physiol Behav 105(3):683–692. doi:10.1016/j.physbeh.2011.10.005

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Ghazizadeh V, Naziroglu M (2014) Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats. Metab Brain Dis 29(3):787–799. doi:10.1007/s11011-014-9549-9

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Hernandez-Rapp J, Rainone S, Hebert SS (2016) MicroRNAs underlying memory deficits in neurodegenerative disorders. Prog Neuropsychopharmacol Biol Psychiatry. doi:10.1016/j.pnpbp.2016.04.011

    PubMed  Google Scholar 

  8. 8.

    Dasdag S, Akdag MZ, Erdal ME, Erdal N, Ay OI, Ay ME, Yilmaz SG, Tasdelen B, Yegin K (2015) Effects of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on microRNA expression in brain tissue. Int J Radiat Biol 91(7):555–561. doi:10.3109/09553002.2015.1028599

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Cloke JM, Jacklin DL, Winters BD (2015) The neural bases of crossmodal object recognition in non-human primates and rodents: a review. Behav Brain Res 285:118–130. doi:10.1016/j.bbr.2014.09.039

    Article  PubMed  Google Scholar 

  10. 10.

    Brett-Green B, Fifkova E, Larue DT, Winer JA, Barth DS (2003) A multisensory zone in rat parietotemporal cortex: intra- and extracellular physiology and thalamocortical connections. J Comp Neurol 460(2):223–237. doi:10.1002/cne.10637

    Article  PubMed  Google Scholar 

  11. 11.

    Botly LC, De Rosa E (2007) Cholinergic influences on feature binding. Behav Neurosci 121(2):264–276. doi:10.1037/0735-7044.121.2.264

    Article  PubMed  Google Scholar 

  12. 12.

    Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459(7247):698–702. doi:10.1038/nature07991

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Olcese U, Iurilli G, Medini P (2013) Cellular and synaptic architecture of multisensory integration in the mouse neocortex. Neuron 79(3):579–593. doi:10.1016/j.neuron.2013.06.010

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Koelewijn T, Bronkhorst A, Theeuwes J (2010) Attention and the multiple stages of multisensory integration: a review of audiovisual studies. Acta Physiol (Oxf) 134(3):372–384. doi:10.1016/j.actpsy.2010.03.010

    Google Scholar 

  15. 15.

    Shafiei SA, Firoozabadi SM (2014) Local ELF-magnetic field: a possible novel therapeutic approach to psychology symptoms. Neurol Sci: Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 35(11):1651–1656. doi:10.1007/s10072-014-1905-3

    Article  Google Scholar 

  16. 16.

    Amirifalah Z, Firoozabadi SM, Shafiei SA (2013) Local exposure of brain central areas to a pulsed ELF magnetic field for a purposeful change in EEG. Clin EEG Neurosci 44(1):44–52. doi:10.1177/1550059412460164

    Article  PubMed  Google Scholar 

  17. 17.

    Darabi SAS, Firoozabadi SM, Tabatabaie KR, Ghabaee M (2011) EEG changes during exposure to extremely low frequency magnetic field on a small area of brain. Koomesh 12(2):167–174

    Google Scholar 

  18. 18.

    Shafiei SA, Firoozabadi SM, Tabatabaie KR, Ghabaee M (2014) Investigation of EEG changes during exposure to extremely low-frequency magnetic field to conduct brain signals. Neurol Sci: Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 35(11):1715–1721. doi:10.1007/s10072-014-1819-0

    CAS  Article  Google Scholar 

  19. 19.

    Paulraj R, Behari J (2006) Protein kinase C activity in developing rat brain cells exposed to 2.45 GHz radiation. Electromagn Biol Med 25(1):61–70. doi:10.1080/15368370600581939

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Tok L, Naziroglu M, Dogan S, Kahya MC, Tok O (2014) Effects of melatonin on Wi-Fi-induced oxidative stress in lens of rats. Indian J Ophthalmol 62(1):12–15. doi:10.4103/0301-4738.126166

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Celik O, Kahya MC, Naziroglu M (2015) Oxidative stress of brain and liver is increased by Wi-Fi (2.45 GHz) exposure of rats during pregnancy and the development of newborns. J Chem Neuroanat. doi:10.1016/j.jchemneu.2015.10.005

    PubMed  Google Scholar 

  22. 22.

    Akdag MZ, Dasdag S, Canturk F, Karabulut D, Caner Y, Adalier N (2016) Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats? J Chem Neuroanat. doi:10.1016/j.jchemneu.2016.01.003

    Google Scholar 

  23. 23.

    Cassel JC, Cosquer B, Galani R, Kuster N (2004) Whole-body exposure to 2.45 GHz electromagnetic fields does not alter radial-maze performance in rats. Behav Brain Res 155(1):37–43. doi:10.1016/j.bbr.2004.03.031

    Article  PubMed  Google Scholar 

  24. 24.

    Cobb BL, Jauchem JR, Adair ER (2004) Radial arm maze performance of rats following repeated low level microwave radiation exposure. Bioelectromagnetics 25(1):49–57. doi:10.1002/bem.10148

    Article  PubMed  Google Scholar 

  25. 25.

    Cosquer B, Galani R, Kuster N, Cassel JC (2005) Whole-body exposure to 2.45 GHz electromagnetic fields does not alter anxiety responses in rats: a plus-maze study including test validation. Behav Brain Res 156(1):65–74. doi:10.1016/j.bbr.2004.05.007

    Article  PubMed  Google Scholar 

  26. 26.

    Reid JM, Jacklin DL, Winters BD (2014) Delineating prefrontal cortex region contributions to crossmodal object recognition in rats. Cereb Cortex (New York, NY: 1991) 24(8):2108–2119. doi:10.1093/cercor/bht061

    Google Scholar 

  27. 27.

    Reid JM, Jacklin DL, Winters BD (2012) Crossmodal object recognition in rats with and without multimodal object pre-exposure: no effect of hippocampal lesions. Neurobiol Learn Mem 98(3):311–319. doi:10.1016/j.nlm.2012.09.001

    Article  PubMed  Google Scholar 

  28. 28.

    Stein BE, Stanford TR (2008) Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci 9(4):255–266. doi:10.1038/nrn2331

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Winters BD, Saksida LM, Bussey TJ (2006) Paradoxical facilitation of object recognition memory after infusion of scopolamine into perirhinal cortex: implications for cholinergic system function. J Neurosci 26(37):9520–9529. doi:10.1523/jneurosci.2319-06.2006

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Jacklin DL, Kelly P, Bianchi C, MacDonald T, Traquair H, Winters BD (2015) Evidence for a specific role for muscarinic receptors in crossmodal object recognition in rats. Neurobiol Learn Mem 118:125–132. doi:10.1016/j.nlm.2014.11.017

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Ohno M, Yamamoto T, Watanabe S (1994) Blockade of hippocampal M1 muscarinic receptors impairs working memory performance of rats. Brain Res 650(2):260–266

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    von Linstow Roloff E, Harbaran D, Micheau J, Platt B, Riedel G (2007) Dissociation of cholinergic function in spatial and procedural learning in rats. Neuroscience 146(3):875–889. doi:10.1016/j.neuroscience.2007.02.038

    Article  Google Scholar 

  33. 33.

    Levey A, Edmunds S, Koliatsos V, Wiley R, Heilman C (1995) Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci 15(5):4077–4092

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Research Deputy of Rafsanjan University of Medical Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Shamsizadeh.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hassanshahi, A., Shafeie, S.A., Fatemi, I. et al. The effect of Wi-Fi electromagnetic waves in unimodal and multimodal object recognition tasks in male rats. Neurol Sci 38, 1069–1076 (2017). https://doi.org/10.1007/s10072-017-2920-y

Download citation

Keywords

  • Wi-Fi
  • Novel object recognition
  • Memory
  • Muscarinic receptor
  • GABA