Neurological Sciences

, Volume 38, Issue 6, pp 1069–1076 | Cite as

The effect of Wi-Fi electromagnetic waves in unimodal and multimodal object recognition tasks in male rats

  • Amin Hassanshahi
  • Seyed Ali Shafeie
  • Iman Fatemi
  • Elham Hassanshahi
  • Mohammad Allahtavakoli
  • Mohammad Shabani
  • Ali Roohbakhsh
  • Ali Shamsizadeh
Original Article

Abstract

Wireless internet (Wi-Fi) electromagnetic waves (2.45 GHz) have widespread usage almost everywhere, especially in our homes. Considering the recent reports about some hazardous effects of Wi-Fi signals on the nervous system, this study aimed to investigate the effect of 2.4 GHz Wi-Fi radiation on multisensory integration in rats. This experimental study was done on 80 male Wistar rats that were allocated into exposure and sham groups. Wi-Fi exposure to 2.4 GHz microwaves [in Service Set Identifier mode (23.6 dBm and 3% for power and duty cycle, respectively)] was done for 30 days (12 h/day). Cross-modal visual-tactile object recognition (CMOR) task was performed by four variations of spontaneous object recognition (SOR) test including standard SOR, tactile SOR, visual SOR, and CMOR tests. A discrimination ratio was calculated to assess the preference of animal to the novel object. The expression levels of M1 and GAT1 mRNA in the hippocampus were assessed by quantitative real-time RT-PCR. Results demonstrated that rats in Wi-Fi exposure groups could not discriminate significantly between the novel and familiar objects in any of the standard SOR, tactile SOR, visual SOR, and CMOR tests. The expression of M1 receptors increased following Wi-Fi exposure. In conclusion, results of this study showed that chronic exposure to Wi-Fi electromagnetic waves might impair both unimodal and cross-modal encoding of information.

Keywords

Wi-Fi Novel object recognition Memory Muscarinic receptor GABA 

References

  1. 1.
    Watson R (2011) Radiation fears prompt possible restrictions on Wi-Fi and mobile phone use in schools. BMJ (Clin Res Ed) 342:d3428. doi:10.1136/bmj.d3428 CrossRefGoogle Scholar
  2. 2.
    Dasdag S, Tas M, Akdag MZ, Yegin K (2015) Effect of long-term exposure of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on testes functions. Electromagn Biol Med 34(1):37–42. doi:10.3109/15368378.2013.869752 CrossRefPubMedGoogle Scholar
  3. 3.
    Naziroglu M, Yuksel M, Kose SA, Ozkaya MO (2013) Recent reports of Wi-Fi and mobile phone-induced radiation on oxidative stress and reproductive signaling pathways in females and males. J Membr Biol 246(12):869–875. doi:10.1007/s00232-013-9597-9 CrossRefPubMedGoogle Scholar
  4. 4.
    Shahin S, Mishra V, Singh SP, Chaturvedi CM (2014) 2.45-GHz microwave irradiation adversely affects reproductive function in male mouse, Mus musculus by inducing oxidative and nitrosative stress. Free Radic Res 48(5):511–525. doi:10.3109/10715762.2014.888717 CrossRefPubMedGoogle Scholar
  5. 5.
    Naziroglu M, Celik O, Ozgul C, Cig B, Dogan S, Bal R, Gumral N, Rodriguez AB, Pariente JA (2012) Melatonin modulates wireless (2.45 GHz)-induced oxidative injury through TRPM2 and voltage gated Ca(2+) channels in brain and dorsal root ganglion in rat. Physiol Behav 105(3):683–692. doi:10.1016/j.physbeh.2011.10.005 CrossRefPubMedGoogle Scholar
  6. 6.
    Ghazizadeh V, Naziroglu M (2014) Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats. Metab Brain Dis 29(3):787–799. doi:10.1007/s11011-014-9549-9 CrossRefPubMedGoogle Scholar
  7. 7.
    Hernandez-Rapp J, Rainone S, Hebert SS (2016) MicroRNAs underlying memory deficits in neurodegenerative disorders. Prog Neuropsychopharmacol Biol Psychiatry. doi:10.1016/j.pnpbp.2016.04.011 PubMedGoogle Scholar
  8. 8.
    Dasdag S, Akdag MZ, Erdal ME, Erdal N, Ay OI, Ay ME, Yilmaz SG, Tasdelen B, Yegin K (2015) Effects of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on microRNA expression in brain tissue. Int J Radiat Biol 91(7):555–561. doi:10.3109/09553002.2015.1028599 CrossRefPubMedGoogle Scholar
  9. 9.
    Cloke JM, Jacklin DL, Winters BD (2015) The neural bases of crossmodal object recognition in non-human primates and rodents: a review. Behav Brain Res 285:118–130. doi:10.1016/j.bbr.2014.09.039 CrossRefPubMedGoogle Scholar
  10. 10.
    Brett-Green B, Fifkova E, Larue DT, Winer JA, Barth DS (2003) A multisensory zone in rat parietotemporal cortex: intra- and extracellular physiology and thalamocortical connections. J Comp Neurol 460(2):223–237. doi:10.1002/cne.10637 CrossRefPubMedGoogle Scholar
  11. 11.
    Botly LC, De Rosa E (2007) Cholinergic influences on feature binding. Behav Neurosci 121(2):264–276. doi:10.1037/0735-7044.121.2.264 CrossRefPubMedGoogle Scholar
  12. 12.
    Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459(7247):698–702. doi:10.1038/nature07991 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Olcese U, Iurilli G, Medini P (2013) Cellular and synaptic architecture of multisensory integration in the mouse neocortex. Neuron 79(3):579–593. doi:10.1016/j.neuron.2013.06.010 CrossRefPubMedGoogle Scholar
  14. 14.
    Koelewijn T, Bronkhorst A, Theeuwes J (2010) Attention and the multiple stages of multisensory integration: a review of audiovisual studies. Acta Physiol (Oxf) 134(3):372–384. doi:10.1016/j.actpsy.2010.03.010 Google Scholar
  15. 15.
    Shafiei SA, Firoozabadi SM (2014) Local ELF-magnetic field: a possible novel therapeutic approach to psychology symptoms. Neurol Sci: Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 35(11):1651–1656. doi:10.1007/s10072-014-1905-3 CrossRefGoogle Scholar
  16. 16.
    Amirifalah Z, Firoozabadi SM, Shafiei SA (2013) Local exposure of brain central areas to a pulsed ELF magnetic field for a purposeful change in EEG. Clin EEG Neurosci 44(1):44–52. doi:10.1177/1550059412460164 CrossRefPubMedGoogle Scholar
  17. 17.
    Darabi SAS, Firoozabadi SM, Tabatabaie KR, Ghabaee M (2011) EEG changes during exposure to extremely low frequency magnetic field on a small area of brain. Koomesh 12(2):167–174Google Scholar
  18. 18.
    Shafiei SA, Firoozabadi SM, Tabatabaie KR, Ghabaee M (2014) Investigation of EEG changes during exposure to extremely low-frequency magnetic field to conduct brain signals. Neurol Sci: Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 35(11):1715–1721. doi:10.1007/s10072-014-1819-0 CrossRefGoogle Scholar
  19. 19.
    Paulraj R, Behari J (2006) Protein kinase C activity in developing rat brain cells exposed to 2.45 GHz radiation. Electromagn Biol Med 25(1):61–70. doi:10.1080/15368370600581939 CrossRefPubMedGoogle Scholar
  20. 20.
    Tok L, Naziroglu M, Dogan S, Kahya MC, Tok O (2014) Effects of melatonin on Wi-Fi-induced oxidative stress in lens of rats. Indian J Ophthalmol 62(1):12–15. doi:10.4103/0301-4738.126166 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Celik O, Kahya MC, Naziroglu M (2015) Oxidative stress of brain and liver is increased by Wi-Fi (2.45 GHz) exposure of rats during pregnancy and the development of newborns. J Chem Neuroanat. doi:10.1016/j.jchemneu.2015.10.005 PubMedGoogle Scholar
  22. 22.
    Akdag MZ, Dasdag S, Canturk F, Karabulut D, Caner Y, Adalier N (2016) Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats? J Chem Neuroanat. doi:10.1016/j.jchemneu.2016.01.003 Google Scholar
  23. 23.
    Cassel JC, Cosquer B, Galani R, Kuster N (2004) Whole-body exposure to 2.45 GHz electromagnetic fields does not alter radial-maze performance in rats. Behav Brain Res 155(1):37–43. doi:10.1016/j.bbr.2004.03.031 CrossRefPubMedGoogle Scholar
  24. 24.
    Cobb BL, Jauchem JR, Adair ER (2004) Radial arm maze performance of rats following repeated low level microwave radiation exposure. Bioelectromagnetics 25(1):49–57. doi:10.1002/bem.10148 CrossRefPubMedGoogle Scholar
  25. 25.
    Cosquer B, Galani R, Kuster N, Cassel JC (2005) Whole-body exposure to 2.45 GHz electromagnetic fields does not alter anxiety responses in rats: a plus-maze study including test validation. Behav Brain Res 156(1):65–74. doi:10.1016/j.bbr.2004.05.007 CrossRefPubMedGoogle Scholar
  26. 26.
    Reid JM, Jacklin DL, Winters BD (2014) Delineating prefrontal cortex region contributions to crossmodal object recognition in rats. Cereb Cortex (New York, NY: 1991) 24(8):2108–2119. doi:10.1093/cercor/bht061 Google Scholar
  27. 27.
    Reid JM, Jacklin DL, Winters BD (2012) Crossmodal object recognition in rats with and without multimodal object pre-exposure: no effect of hippocampal lesions. Neurobiol Learn Mem 98(3):311–319. doi:10.1016/j.nlm.2012.09.001 CrossRefPubMedGoogle Scholar
  28. 28.
    Stein BE, Stanford TR (2008) Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci 9(4):255–266. doi:10.1038/nrn2331 CrossRefPubMedGoogle Scholar
  29. 29.
    Winters BD, Saksida LM, Bussey TJ (2006) Paradoxical facilitation of object recognition memory after infusion of scopolamine into perirhinal cortex: implications for cholinergic system function. J Neurosci 26(37):9520–9529. doi:10.1523/jneurosci.2319-06.2006 CrossRefPubMedGoogle Scholar
  30. 30.
    Jacklin DL, Kelly P, Bianchi C, MacDonald T, Traquair H, Winters BD (2015) Evidence for a specific role for muscarinic receptors in crossmodal object recognition in rats. Neurobiol Learn Mem 118:125–132. doi:10.1016/j.nlm.2014.11.017 CrossRefPubMedGoogle Scholar
  31. 31.
    Ohno M, Yamamoto T, Watanabe S (1994) Blockade of hippocampal M1 muscarinic receptors impairs working memory performance of rats. Brain Res 650(2):260–266CrossRefPubMedGoogle Scholar
  32. 32.
    von Linstow Roloff E, Harbaran D, Micheau J, Platt B, Riedel G (2007) Dissociation of cholinergic function in spatial and procedural learning in rats. Neuroscience 146(3):875–889. doi:10.1016/j.neuroscience.2007.02.038 CrossRefGoogle Scholar
  33. 33.
    Levey A, Edmunds S, Koliatsos V, Wiley R, Heilman C (1995) Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci 15(5):4077–4092PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2017

Authors and Affiliations

  • Amin Hassanshahi
    • 1
  • Seyed Ali Shafeie
    • 2
  • Iman Fatemi
    • 1
    • 3
  • Elham Hassanshahi
    • 1
  • Mohammad Allahtavakoli
    • 1
    • 3
  • Mohammad Shabani
    • 4
  • Ali Roohbakhsh
    • 5
  • Ali Shamsizadeh
    • 1
    • 3
  1. 1.Physiology-Pharmacology Research CenterRafsanjan University of Medical SciencesRafsanjanIran
  2. 2.Department of Physiology and Pharmacology, School of MedicineQom University of Medical SciencesQomIran
  3. 3.Department of Physiology and Pharmacology, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
  4. 4.Kerman Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
  5. 5.Pharmaceutical Research CenterMashhad University of Medical SciencesMashhadIran

Personalised recommendations