Differences in corticospinal system activity and reaction response between karate athletes and non-athletes

Abstract

The aim of this study was to verify the hypothesis that transcranial magnetic stimulation (TMS) parameters over the hand region of the motor cortex, such as resting motor threshold (rMT) and motor evoked potential (MEP) latency, predict the behavioural performance of karate athletes in the response time (RT) test. Twenty-five male karate athletes (24.9 ± 4.9 years) and 25 matched non-athletes (26.2 ± 4.5 years) were recruited. Using TMS, we investigated cortico-spinal system excitability. Compared with controls, the athletes showed faster RT (p < 0.001), lower rMT (p < 0.01), shorter MEP latency (p < 0.01), and higher MEP amplitude (p < 0.01); moreover, there was a significant positive linear correlation between RT and rMT (p < 0.001), between RT and MEP latency (p < 0.0001), and a negative correlation between RT and MEP amplitude (p < 0.001). The practice of competitive sports affects both the central and peripheral nervous system. Subjects that showed higher cortical excitability showed also higher velocity, at which the neural signal is propagated from the motor cortex to the muscle and consequently better RT. The lower rMT and the shorter MEP latency observed in athletes support the effects of training in determining specific brain organizations to meet specific sport challenges.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Moscatelli F, Messina G, Valenzano A, Petito A, Triggiani AI, Ciliberti MAP, Monda V, Messina A, Tafuri D, Capranica L, Cibelli G, Monda M (2015) Relationship between RPE and blood lactate after fatiguing handgrip exercise in taekwondo and sedentary subjects. Biol Med. doi:10.4172/0974-8369.1000s3008

    Google Scholar 

  2. 2.

    Moscatelli F, Messina G, Valenzano A, Monda V, Viggiano A, Messina A, Petito A, Triggiani AI, Ciliberti MAP, Monda M, Capranica L, Cibelli G (2016) Functional assessment of corticospinal system excitability in karate athletes. PLoS One 11:e0155998. doi:10.1371/journal.pone.0155998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Roberts RE, Anderson EJ, Husain M (2013) White matter microstructure and cognitive function. Neuroscientist 19:8–15. doi:10.1177/1073858411421218

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Schieber MH (2001) Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol 86(5):2125–2143

  5. 5.

    Lee M, Hinder MR, Gandevia SC, Carroll TJ (2010) The ipsilateral motor cortex contributes to cross-limb transfer of performance gains after ballistic motor practice. J Physiol 588:201–212. doi:10.1113/jphysiol.2009.183855

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Coco M, Alagona G, De Maria G, Rapisarda G, Costanzo E, Perciavalle V, Perciavalle V (2015) Relationship of high blood lactate levels with latency of visual-evoked potentials. Neurol Sci 36:541–546. doi:10.1007/s10072-014-2015-y

    Article  PubMed  Google Scholar 

  7. 7.

    Monfils M-H, Plautz EJ, Kleim JA (2005) In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience. Neuroscientist 11:471–483. doi:10.1177/1073858405278015

    Article  PubMed  Google Scholar 

  8. 8.

    Nielsen JB, Cohen LG (2008) The Olympic brain. Does corticospinal plasticity play a role in acquisition of skills required for high-performance sports? J Physiol 586:65–70. doi:10.1113/jphysiol.2007.142661

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Perciavalle V, Alagona G, De Maria G, Rapisarda G, Costanzo E, Perciavalle V, Coco M (2015) Somatosensory evoked potentials and blood lactate levels. Neurol Sci 36:1597–1601. doi:10.1007/s10072-015-2210-5

    Article  PubMed  Google Scholar 

  10. 10.

    Graziano M (2006) The organization of behavioral repertoire in motor cortex. Annu Rev Neurosci 29:105–134. doi:10.1146/annurev.neuro.29.051605.112924

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Gould D, Jackson S, Finch L (1993) Sources of stress in national champion figure skaters. J Sport Exerc, pp 134–159

  12. 12.

    Te Velde AF, Van Der Kamp J, Barela JA, Savelsbergh GJP (2005) Visual timing and adaptive behavior in a road-crossing simulation study. Accid Anal Prev 37:399–406. doi:10.1016/j.aap.2004.12.002

    Article  Google Scholar 

  13. 13.

    Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mech Eng 2012:1–10. doi:10.5402/2012/208760

    Article  Google Scholar 

  14. 14.

    Mori S, Ohtani Y, Imanaka K (2002) Reaction times and anticipatory skills of karate athletes. Hum Mov Sci 21:213–230. doi:10.1016/S0167-9457(02)00103-3

    Article  PubMed  Google Scholar 

  15. 15.

    Collet C (1999) Strategic aspects of reaction time in world-class sprinters. Percept Mot Skills 88:65–75. doi:10.2466/pms.1999.88.1.65

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Leocani L, Comi G (2006) Electrophysiological studies of brain plasticity of the motor system. Neurol Sci 27(Suppl 1):S27–S29. doi:10.1007/s10072-006-0542-x

    Article  PubMed  Google Scholar 

  17. 17.

    Perciavalle V, Maci T, Perciavalle V, Massimino S, Coco M (2015) Working memory and blood lactate levels. Neurol Sci 36(11):2129–2136

    Article  PubMed  Google Scholar 

  18. 18.

    Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijevic MR, Hallett M, Katayama Y, Lucking CH, Dimitrijević MR, Lücking CH (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91:79–92

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Missitzi J, Gentner R, Geladas N, Politis P, Karandreas N, Classen J, Klissouras V (2011) Plasticity in human motor cortex is in part genetically determined. J Physiol 589:297–306. doi:10.1113/jphysiol.2010.200600

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Selvanayagam VS, Riek S, Carroll TJ (2011) Early neural responses to strength training. J Appl Physiol 111:367–375. doi:10.1152/japplphysiol.00064.2011

    Article  PubMed  Google Scholar 

  21. 21.

    Alagona G, Coco M, Rapisarda G, Costanzo E, Maci T, Restivo D, Maugeri A, Perciavalle V (2009) Changes of blood lactate levels after repetitive transcranial magnetic stimulation. Neurosci Lett 450:111–113. doi:10.1016/j.neulet.2008.11.064

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M (1995) Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 74:1037–1045

    CAS  PubMed  Google Scholar 

  23. 23.

    Gallasch E, Christova M, Krenn M, Kossev A, Rafolt D (2009) Changes in motor cortex excitability following training of a novel goal-directed motor task. Eur J Appl Physiol 105:47–54. doi:10.1007/s00421-008-0871-y

    Article  PubMed  Google Scholar 

  24. 24.

    Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di IR, Di VL, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee 3. Clin Neurophysiol 126(6):1071–1107

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Robbins TW, James M, Owen AM, Sahakian BJ, McInnes L, Rabbitt P (1997) A neural systems approach to the cognitive psychology of ageing using the CANTAB battery:Studies with CANTAB on a large sample of the normal elderly population. Methodol. Front. Exec. Funct. pp 215–238

  26. 26.

    Müller S, Abernethy B (2012) Expert anticipatory skill in striking sports: a review and a model. Res Q Exerc Sport 83:175–187. doi:10.5641/027013612800745059

    PubMed  Google Scholar 

  27. 27.

    Moscatelli F, Valenzano A, Petito A, Triggiani AI, Ciliberti M.A.P, Luongo L, Carotenuto M, Esposito M, Messina A, Monda V, Monda M, Capranica L, Cibelli G (2016) Relationship between blood lactate and cortical excitability between taekwondo athletes and non-athletes after hand-grip exercise. Somatosens. Mot Res (Accepted)

  28. 28.

    Smyth C, Summers JJ, Garry MI (2010) Differences in motor learning success are associated with differences in M1 excitability. Hum Mov Sci 29:618–630. doi:10.1016/j.humov.2010.02.006

    Article  PubMed  Google Scholar 

  29. 29.

    Pearce AJ, Thickbroom GW, Byrnes ML, Mastaglia FL (2000) Functional reorganisation of the corticomotor projection to the hand in skilled racquet players. Exp Brain Res 130:238–243. doi:10.1007/s002219900236

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Bezzola L, Mérillat S, Gaser C, Jäncke L (2011) Training-induced neural plasticity in golf novices. J Neurosci 31:12444–12448. doi:10.1523/JNEUROSCI.1996-11.2011

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Taubert M, Draganski B, Anwander A, Müller K, Horstmann A, Villringer A, Ragert P (2010) Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J Neurosci 30:11670–11677. doi:10.1523/JNEUROSCI.2567-10.2010

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Kobilo T, Liu Q-R, Gandhi K, Mughal M, Shaham Y, van Praag H (2011) Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learn Mem 18:605–609. doi:10.1101/lm.2283011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Müller-Dahlhaus F, Ziemann U, Classen J (2010) Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex. Front Synaptic Neurosci. doi:10.3389/fnsyn.2010.00034

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Noyes FR, Mooar PA, Matthews DS, Butler DL (1983) The symptomatic anterior cruciate-deficient knee. Part I: the long-term functional disability in athletically active individuals. J Bone Joint Surg Am 65:154–162

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Messina G, Dalia C, Tafuri D, Monda V, Palmieri F, Dato A, Russo A, De Blasio S, Messina A, De Luca V, Chieffi S, Monda M (2014) Orexin-A controls sympathetic activity and eating behavior. Front Psychol 5:997. doi:10.3389/fpsyg.2014.00997

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Fox PW, Hershberger SL, Bouchard TJ Jr (1996) Genetic and environmental contributions to the acquisition of a motor skill. Nature 384:356–358. doi:10.1038/384356a0

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Pearce AJ, Thickbroom GW, Byrnes ML, Mastaglia FL (2000) Functional reorganisation of the corticomotor projection to the hand in skilled racquet players. Exp Brain Res 130:238–243. doi:10.1007/s002219900236

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Ray M, Dewey D, Kooistra L, Welsh TN (2013) The relationship between the motor system activation during action observation and adaptation in the motor system following repeated action observation. Hum Mov Sci 32:400–411. doi:10.1016/j.humov.2012.02.003

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank karate athletes and non-athletes for his participation in this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giovanni Messina.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moscatelli, F., Messina, G., Valenzano, A. et al. Differences in corticospinal system activity and reaction response between karate athletes and non-athletes. Neurol Sci 37, 1947–1953 (2016). https://doi.org/10.1007/s10072-016-2693-8

Download citation

Keywords

  • Cortical excitability
  • Reaction time
  • Transcranial magnetic stimulation
  • Karate