Skip to main content
Log in

Monte Carlo cross-validation analysis screens pathway cross-talk associated with Parkinson’s disease

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

We purposed to identify underlying functional pathway cross-talk in Parkinson’s disease (PD) through Monte Carlo cross-validation analysis. Microarray data set of E-GEOD-6613 was downloaded from ArrayExpress database. First, the identification of differentially expressed genes (DEGs) was implemented, following by extracting the potential disrupted pathway enriched by DEGs. In addition, a discriminating score (DS) was computed based on the distribution of gene expression levels by quantifying their pathway cross-talk for each pair of pathways. Furthermore, random forest (RF) classification model was utilized to identify the top ten paired pathways with high AUC between PD and healthy control samples using the tenfold cross-validation method. Finally, Monte Carlo cross-validation was repeated 50 times to explore the best pairs of pathways. After quantile normalization, a total of 9331 genes with higher than 0.25-fold quantile average across all samples were obtained. Totally, 42 DEGs and 19 differential pathways enriched from DEGs were identified. We then ranked each pathway according to their AUC values, the pair of pathways, phosphatidylcholine biosynthesis I, and PPAR signaling obtained the best AUC value of 0.942. Moreover, the paired pathways of mTOR signaling and CD28 signaling in T helper cells had higher AUC value of 0.837 in five bootstraps. Two paired pathways, including phosphatidylcholine biosynthesis I and PPAR signaling, as well as mTOR signaling and CD28 signaling in T helper cells were able to accurately classify PD and healthy control samples. Significantly, these paired pathways might be underlying biomarkers for early diagnosis and therapy of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dorsey E, Constantinescu R, Thompson J, Biglan K, Holloway R, Kieburtz K, Marshall F, Ravina B, Schifitto G, Siderowf A (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68:384–386

    Article  CAS  PubMed  Google Scholar 

  2. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosur Psy 55:181–184

    Article  CAS  Google Scholar 

  3. Lücking CB, Dürr A, Bonifati V, Vaughan J, De Michele G, Gasser T, Harhangi BS, Meco G, Denèfle P, Wood NW (2000) Association between early-onset Parkinson’s disease and mutations in the parkin gene. New Engl J Med 342:1560–1567

    Article  PubMed  Google Scholar 

  4. Murata S, Chiba T, Tanaka K (2003) CHIP: a quality-control E3 ligase collaborating with molecular chaperones. Int J Biochem Cell B 35:572–578

    Article  CAS  Google Scholar 

  5. Edwards TL, Scott WK, Almonte C, Burt A, Powell EH, Beecham GW, Wang L, Züchner S, Konidari I, Wang G (2010) Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet 74:97–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spencer CC, Plagnol V, Strange A, Gardner M, Paisan-Ruiz C, Band G, Barker RA, Bellenguez C, Bhatia K, Blackburn H (2011) Dissection of the genetics of Parkinson’s disease identifies an additional association 5′ of SNCA and multiple associated haplotypes at 17q21. Hum Mol Genet 20:345–353

    Article  CAS  PubMed  Google Scholar 

  7. Tomfohr J, Lu J, Kepler TB (2005) Pathway level analysis of gene expression using singular value decomposition. BMC Bioinform 6:225

    Article  Google Scholar 

  8. Rapaport F, Zinovyev A, Dutreix M, Barillot E, Vert JP (2007) Classification of microarray data using gene networks. BMC Bioinform 8:35

    Article  Google Scholar 

  9. Donato M, Xu Z, Tomoiaga A, Granneman JG, MacKenzie RG, Bao R, Than NG, Westfall PH, Romero R, Draghici S (2013) Analysis and correction of crosstalk effects in pathway analysis. Genome Res 23:1885–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Colaprico A, Cava C, Bertoli G, Bontempi G and Castiglioni I (2015) Integrative analysis with Monte Carlo cross-validation reveals miRNAs regulating pathways cross-talk in aggressive breast cancer. BioMed Res Int 2015. doi:10.1155/2015/831314

  11. Scherzer CR, Eklund AC, Morse LJ, Liao Z, Locascio JJ, Fefer D, Schwarzschild MA, Schlossmacher MG, Hauser MA, Vance JM (2007) Molecular markers of early Parkinson’s disease based on gene expression in blood. P Natl Acad Sci 104:955–960

    Article  CAS  Google Scholar 

  12. Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) Affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307–315

    Article  CAS  PubMed  Google Scholar 

  13. Robinson MD, McCarthy DJ, Smyth GK (2010) EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  14. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57:289–300

    Google Scholar 

  15. Orsetti B, Nugoli M, Cervera N, Lasorsa L, Chuchana P, Rougé C, Ursule L, Nguyen C, Bibeau F, Rodriguez C (2006) Genetic profiling of chromosome 1 in breast cancer: mapping of regions of gains and losses and identification of candidate genes on 1q. Brit J Cancer 95:1439–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537

    Article  CAS  PubMed  Google Scholar 

  17. Cava C, Bertoli G, Castiglioni I (2014) Pathway-based expression profile for breast cancer diagnoses. In: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE. IEEE

  18. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  19. Kadowaki H, Grant MA (1995) Relationship of membrane phospholipid composition, lactosylceramide molecular species, and the specificity of CMP-N-acetylneuraminate: lactosylceramide alpha 2, 3-sialyltransferase to the molecular species composition of GM3 ganglioside. J Lipid Res 36:1274–1282

    CAS  PubMed  Google Scholar 

  20. Wright MM, Howe AG, Zaremberg V (2004) Cell membranes and apoptosis: role of cardiolipin, phosphatidylcholine, and anticancer lipid. Biochem Cell Biol 26:18–26

    Article  Google Scholar 

  21. Masuda Y, Kokubu T, Yamashita M, Ikeda H, Inoue S (1998) EGG phosphatidylcholine combined with vitamin B12 improved memory impairment following lesioning of nucleus basalis in rats. Life Sci 62:813–822

    Article  CAS  PubMed  Google Scholar 

  22. Farmer K, Smith CA, Hayley S, Smith J (2015) Major alterations of phosphatidylcholine and lysophosphotidylcholine lipids in the substantia nigra using an early stage model of Parkinson’s disease. Int J Mol Sci 16:18865–18877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wurtman RJ, Cansev M, Sakamoto T, Ulus I (2010) Nutritional modifiers of aging brain function: use of uridine and other phosphatide precursors to increase formation of brain synapses. Nutr Rev 68:S88–S101

    Article  PubMed  PubMed Central  Google Scholar 

  24. Marcucci H, Paoletti L, Jackowski S, Banchio C (2010) Phosphatidylcholine biosynthesis during neuronal differentiation and its role in cell fate determination. J Biol Chem 285:25382–25393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cui Z, Houweling M (2002) Phosphatidylcholine and cell death. BBA-Mol Cell Biol Lipids 1585:87–96

    Article  CAS  Google Scholar 

  26. Klein J (2000) Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids. J Neural Transm 107:1027–1063

    Article  CAS  PubMed  Google Scholar 

  27. Treede I, Braun A, Sparla R, Kühnel M, Giese T, Turner JR, Anes E, Kulaksiz H, Füllekrug J, Stremmel W, Griffiths G, Ehehalt R (2007) Anti-inflammatory effects of phosphatidylcholine. J Biol Chem 282:27155–27164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qin Z, Zhu H, Hu Y (2009) Effects of lysophosphatidylcholine on β-amyloid-induced neuronal apoptosis. Acta Pharmacol Sin 30:388–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wahli W, Michalik L (2012) PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrin Met 23:351–363

    Article  CAS  Google Scholar 

  30. Adibhatla RM, Hatcher JF, Dempsey RJ (2003) Phospholipase A2, hydroxyl radicals, and lipid peroxidation in transient cerebral ischemia. Antioxid Redox Sign 5:647–654

    Article  CAS  Google Scholar 

  31. Kreisler A, Gelé P, Wiart JF, Lhermitte M, Destée A, Bordet R (2007) Lipid-lowering drugs in the MPTP mouse model of Parkinson’s disease: fenofibrate has a neuroprotective effect, whereas bezafibrate and HMG-CoA reductase inhibitors do not. Brain Res 1135:77–84

    Article  CAS  PubMed  Google Scholar 

  32. Moraes LA, Piqueras L, Bishop-Bailey D (2006) Peroxisome proliferator-activated receptors and inflammation. Pharmacol Ther 110:371–385

    Article  CAS  PubMed  Google Scholar 

  33. Ravnsjkjaer K, Frigerio F, Boegesen M, Nielsen T, Maechler P, Mandrup S (2010) PPAR-γ is a fatty acid sensor that enhances mitochondrial oxidation in insulin-secreting cells and protects against fatty acid-induced dysfunction. J Lipid Res 51:1370–1379

    Article  Google Scholar 

  34. Taetzsch T, Block ML (2013) Pesticides, microglial NOX2, and Parkinson’s disease. J Biochem Molecular Toxic 27:137–149

    Article  CAS  Google Scholar 

  35. Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA et al (2010) PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med 2:52–73

    Article  Google Scholar 

  36. Winklhofer KF, Haass C (2010) Mitochondrial dysfunction in Parkinson’s disease. Biochim Biophys Acta 1802:29–44

    Article  CAS  PubMed  Google Scholar 

  37. Benner EJ, Banerjee R, Reynolds AD, Sherman S, Pisarev VM, Tsiperson V, Nemachek C, Ciborowski P, Przedborski S, Mosley RL (2008) Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One 3:e1376

    Article  PubMed  PubMed Central  Google Scholar 

  38. Miklossy J, Doudet D, Schwab C, Yu S, McGeer E, McGeer P (2006) Role of ICAM-1 in persisting inflammation in Parkinson disease and MPTP monkeys. Exp Neurol 197:275–283

    Article  CAS  PubMed  Google Scholar 

  39. Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of T cell costimulation. Ann Rev Immunol 14:233–258

    Article  CAS  Google Scholar 

  40. Yi-qun Z, Lorre K, de Boer M, Ceuppens JL (1997) B7-blocking agents, alone or in combination with cyclosporine A, induce antigen-specific anergy of human memory T cells. J Immunol 158:4734–4740

    CAS  PubMed  Google Scholar 

  41. Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, Xiao B, Worley PF, Powell JD (2011) The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 12(4):295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  CAS  PubMed  Google Scholar 

  43. Colombetti S, Basso V, Mueller DL, Mondino A (2006) Prolonged TCR/CD28 engagement drives IL-2-independent T cell clonal expansion through signaling mediated by the mammalian target of rapamycin. J Immunol 176:2730–2738

    Article  CAS  PubMed  Google Scholar 

  44. Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N (2009) Translational control of long-lasting synaptic plasticity and memory. Neuron 61:10–26

    Article  CAS  PubMed  Google Scholar 

  45. Dyskinesia D (2009) Inhibition of mTOR signaling in Parkinson’s disease prevents L-DOPA–induced dyskinesia. Sci Sign 2:ra36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang.

Ethics declarations

Conflict of interest

The authors have declared that no conflicts of interest exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Tang, W. & Zhang, L. Monte Carlo cross-validation analysis screens pathway cross-talk associated with Parkinson’s disease. Neurol Sci 37, 1327–1333 (2016). https://doi.org/10.1007/s10072-016-2595-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-016-2595-9

Keywords

Navigation