Skip to main content
Log in

Elevation of serum heat-shock protein levels in amyotrophic lateral sclerosis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Heat-shock proteins (HSPs) have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). In this study, we aimed to examine whether the serum levels of HSPs (HSP27, HSP70, and HSP90) are altered in patients with ALS. We included 58 patients diagnosed with ALS and 85 control individuals. Serum HSP levels of patients and controls were determined using enzyme-linked immunosorbent assay. The serum levels of HSP70 and HSP90 were significantly higher in patients than in controls. In contrast, serum levels of HSP27 did not differ significantly between the patient and control groups. Moreover, serum levels of HSP70 and HSP90 in patients remained high throughout the duration of the disease. Taken together, our findings suggest that HSPs might have a role in ALS progression throughout the course of the disease. Further studies are needed to clarify the role of HSPs in the pathogenesis of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955

    Article  CAS  PubMed  Google Scholar 

  2. Adachi H, Karsuno M, Minamiyama M, Sang C, Pagoulatos G, Angelidis C et al (2003) Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J Neurosci 15:2203–2211

    Google Scholar 

  3. Katsuno M, Sang C, Dachi H, Minamiyama M, Waza M, Tanaka F et al (2005) Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease. Proc Natl Acad Sci USA 102:16801–16806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kalmar B, Lu CH, Greemsmith L (2014) The role of heat shock proteins in amyotrophic lateral sclerosis: the therapeutic potential of arimoclomol. Pharmacol Ther 141:40–54

    Article  CAS  PubMed  Google Scholar 

  5. Patel YJ, Payne Smith MD, de Belleroche J, Latchman DS (2005) Hsp27 and Hsp70 administered in combination have a potent protective effect against FALS-associated SOD1-mutant-induced cell death in mammalian neuronal cells. Brain Res Mol Brain Res 134:256–274

    Article  CAS  PubMed  Google Scholar 

  6. Bassan M, Zamostiano R, Gilade E, Davidson A, Wollman Y, Pitman J et al (1998) The identification of secreted heat shock 60-like protein from rat glial cells and a human neuroblastoma cell line. Neurosci Lett 250:37–40

    Article  CAS  PubMed  Google Scholar 

  7. Pockley AG, Georgiades A, Thulin T, de Faire U, Frostegard J (2003) Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension 42:235–238

    Article  CAS  PubMed  Google Scholar 

  8. Brooks BR, Miller RG, Swash M, Munsat TL (2001) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Mon Neuron Disord 1:293–299

    Article  Google Scholar 

  9. Cedarbaum JM, Stambler N (1997) Performance of the Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS) in multicenter clinical trials. J Neurol Sci 152:S1–S9

    Article  PubMed  Google Scholar 

  10. Beere HM (2004) “The stress of dying”: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 117:2641–2651

    Article  CAS  PubMed  Google Scholar 

  11. Synofzik M, Ronchi D, Keskin I, Basak AN, Wilhelm C, Gobbi C et al (2012) Mutant superoxide dismutase-1 indistinguishable from wild-type causes ALS. Hum Mol Genet 21:3568–3574

    Article  CAS  PubMed  Google Scholar 

  12. Münch C, O’Brien J, Bertolotti A (2011) Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci USA 108:3548–3553

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bruening W, Roy J, Giasson B, Figlewicz DA, Mushynski WE, Durham HD (1999) Up-regulationof protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J Neurochem 72:693–699

    Article  CAS  PubMed  Google Scholar 

  14. Alvira S, Cuellar J, Rohl A, Yamamoto S, Itoh H, Alfonso C et al (2014) Structural characterization of the substrate transfer mechanism in HSP70/HSP90 folding machinery mediated by Hop. Nat Commun 5:5484

    Article  PubMed  Google Scholar 

  15. Currie RW, White FP (1981) Trauma-induced protein in rat tissues: a physiological role for a “heat shock” protein. Science 214:72–73

    Article  CAS  PubMed  Google Scholar 

  16. Krueger-Naug AM, Hopkins DA, Armstrong JN, Plumier JC, Currie RW (2000) Hyperthermic induction of the 27-kDa heat shock protein (Hsp27) in neuroglia and neurons of the rat central nervous system. J Comp Neurol 428:495–510

    Article  CAS  PubMed  Google Scholar 

  17. Pardridge WM (2005) The blood–brain barrier: bottleneck in brain drug development. NeuroRx 2:3–14

    Article  PubMed  PubMed Central  Google Scholar 

  18. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  19. Banks WA, Kastin AJ, Broadwell RD (1995) Passage of cytokines across the blood–brain barrier. Neuroimmunomodulation 2:241–248

    Article  CAS  PubMed  Google Scholar 

  20. Yang J, Bridges K, Chen KY, Liu AY (2008) Riluzole increase the amount of latent HSF1 for an amplified heat shock response and cytoprotection. PLoS One 3:e2864

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li D, Duncan RF (1995) Transient acquired thermotolerane in Drosophila, correlated with rapid degradation of HSP70 during recovery. Eur J Biochem 231:454–465

    Article  CAS  PubMed  Google Scholar 

  22. Mizzen LA, Welch WJ (1988) Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J Cell Biol 106:1105–1116

    Article  CAS  PubMed  Google Scholar 

  23. Labra J, Menon P, Byth K, Morrison S, Vucic S (2015) Rate of disease progression: a prognostic biomarker in ALS. J Neurol Neurosurg Psychiatry. doi:10.1136/jnnp-2015-310998. [Epub ahead of print]

  24. Namba Y, Tomonaga M, Ohtsuka K, Oda M, Ikeda K (1991) HSP70 is associated with abnormal cytoplasmic inclusions characteristic of neurodegenerative disease. No To Shinkei 43:57–60

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan by a Grant-in-Aid from the Promotion Project of Education, Research, and Medical Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinori Nakamura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazaki, D., Nakamura, A., Hineno, A. et al. Elevation of serum heat-shock protein levels in amyotrophic lateral sclerosis. Neurol Sci 37, 1277–1281 (2016). https://doi.org/10.1007/s10072-016-2582-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-016-2582-1

Keywords

Navigation