Skip to main content
Log in

Association between ALDH1L1 gene polymorphism and neural tube defects in the Chinese Han population

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

We investigated single-nucleotide polymorphisms (SNPs) in the aldehyde dehydrogenase family1 L1 gene (ALDH1L1) and their association with neural tube defects (NTDs) in the Chinese population. A total of 271 NTDs cases and 192 healthy controls were used in this study. A total of 112 selected SNPs in the ALDH1L1 gene were analyzed using the next-generation sequencing method. Statistical analysis was carried out to investigate the correlation between SNPs and patient susceptibility to NTDs. Statistical analysis revealed a significant correlation between the SNP sites rs4646733, rs2305225, and rs2276731 in the ALDH1L1 gene and NTDs. The TT genotype and T allele of rs4646733 in ALDH1L1 were associated with a significantly increased incidence of NTDs [odds ratio (OR) = 2.16, 95 % confidence interval (CI) 1.199–3.896 for genotype; and OR = 1.46, 95 % CI 1.092–1.971 for allele]. The AA genotype and A allele of rs2305225 in ALDH1L1 were associated with a significantly increased incidence of NTDs (OR = 2.03, 95 % CI 1.202–3.646 for genotype, and OR = 1.44, 95 % CI 1.096–1.905 for allele). The CT genotype and C allele of rs2276731 in ALDH1L1 significantly were associated with an increased incidence of NTDs (OR = 1.67, 95 % CI 1.129–2.491 with genotype, and OR = 1.32, 95 % CI 0.956–1.816 with allele).The polymorphic loci rs4646733, rs2305225, and rs2276731 in the ALDH1L1 gene maybe potential risk factors for NTDs in the Chinese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wallingford JB, Niswander LA, Shaw GM, Finnell RH (2013) The continuing challenge of understanding, preventing, and treating neural tube defects. Science 339(6123):1222002. doi:10.1126/science.1222002

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barry RJ, Erickson JD, Li S, Moore CA, Wang H, Molinare J, Zhao P, Wang LY, Gindler J, Hong SX (1999) Prevention of neural tube defects with folic acid in China. China-US Collaborative Project for Neural Tube Defects. N Engl J Med 341:1485–1490

    Article  Google Scholar 

  3. Greene ND, Stanier P, Copp AJ (2009) Genetics of human neural tube defects. Hum Mol Genet 18(R2):R113–R129. doi:10.1093/hmg/ddp347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci Off J Soc Neurosci 28(1):264–278. doi:10.1523/JNEUROSCI.4178-07.2008

    Article  CAS  Google Scholar 

  5. Yang Y, Vidensky S, Jin L, Jie C, Lorenzini I, Frankl M, Rothstein JD (2011) Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia 59(2):200–207

    Article  PubMed  PubMed Central  Google Scholar 

  6. Group MRCVSR (1991) Prevention of neural tube defects: results of the medical research council vitamin study. Lancet 338(8760):131–137

    Article  Google Scholar 

  7. Czeizel AE, Dudas I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327(26):1832–1835

    Article  CAS  PubMed  Google Scholar 

  8. Tamura T, Picciano MF (2006) Folate and human reproduction. Am J Clin Nutr 83(5):993–1016

    CAS  PubMed  Google Scholar 

  9. Mantovani E, Filippini F, Bortolus R, Franchi M (2014) Folic acid supplementation and preterm birth: results from observational studies. BioMed Res Int 2014:481914. doi:10.1155/2014/481914

    Article  PubMed  PubMed Central  Google Scholar 

  10. Anthony TE, Heintz N (2007) The folate metabolic enzyme ALDH1L1 is restricted to the midline of the early CNS, suggesting a role in human neural tube defects. J Comp Neurol 500(2):368–383

    Article  CAS  PubMed  Google Scholar 

  11. Franke B, Vermeulen SH, Steegers-Theunissen RP, Coenen MJ, Schijvenaars MM, Scheffer H, den Heijer M, Blom HJ (2009) An association study of 45 folate-related genes in spina bifida: involvement of cubilin (CUBN) and tRNA aspartic acid methyltransferase 1 (TRDMT1). Birth Defects Res A 85(3):216–226. doi:10.1002/bdra.20556

    Article  CAS  Google Scholar 

  12. Gu X, Lin L, Zheng X, Zhang T, Song X, Wang J, Li X, Li P, Chen G, Wu J, Wu L, Liu J (2007) High prevalence of NTDs in Shanxi Province: a combined epidemiological approach. Birth Defects Res A 79(10):702–707. doi:10.1002/bdra.20397

    Article  CAS  Google Scholar 

  13. Zhang Q, Xue P, Li H, Bao Y, Wu L, Chang S, Niu B, Yang F, Zhang T (2013) Histone modification mapping in human brain reveals aberrant expression of histone H3 lysine 79 dimethylation in neural tube defects. Neurobiol Dis 54:404–413

    Article  CAS  PubMed  Google Scholar 

  14. Krupenko SA, Oleinik NV (2002) 10-formyltetrahydrofolate dehydrogenase, one of the major folate enzymes, is down-regulated in tumor tissues and possesses suppressor effects on cancer cells. Cell Growth Differ 13(5):227–236

    CAS  PubMed  Google Scholar 

  15. Oleinik NV, Krupenko NI, Krupenko SA (2011) Epigenetic silencing of ALDH1L1, a metabolic regulator of cellular proliferation, in cancers. Genes Cancer 2(2):130–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krupenko SA (2009) FDH: an aldehyde dehydrogenase fusion enzyme in folate metabolism. Chem Biol Interact 178(1–3):84–93. doi:10.1016/j.cbi.2008.09.007

    Article  CAS  PubMed  Google Scholar 

  17. Williams SR, Yang Q, Chen F, Liu X, Keene KL, Jacques P, Chen W-M, Weinstein G, Hsu F-C, Beiser A (2014) Genome-wide meta-analysis of homocysteine and methionine metabolism identifies five one carbon metabolism loci and a novel association of ALDH1L1 with ischemic stroke. PLoS Genet 10:e1004214

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hoeferlin LA, Fekry B, Ogretmen B, Krupenko SA, Krupenko NI (2013) Folate stress induces apoptosis via p53-dependent de novo ceramide synthesis and up-regulation of ceramide synthase 6. J Biol Chem 288(18):12880–12890. doi:10.1074/jbc.M113.461798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13(8):572–583. doi:10.1038/nrc3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tibbetts AS, Appling DR (2010) Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annu Rev Nutr 30:57–81

    Article  CAS  PubMed  Google Scholar 

  21. Blom HJ, Shaw GM, den Heijer M, Finnell RH (2006) Neural tube defects and folate: case far from closed. Nat Rev Neurosci 7(9):724–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Beaudin AE, Stover PJ (2007) Folate-mediated one-carbon metabolism and neural tube defects: balancing genome synthesis and gene expression. Birth Defects Res Part C Embryo Today Rev 81(3):183–203

    Article  CAS  Google Scholar 

  23. Foo LC, Dougherty JD (2013) Aldh1L1 is expressed by postnatal neural stem cells in vivo. Glia 61(9):1533–1541

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mohamed MA, Aly H (2012) Birth region, race and sex may affect the prevalence of congenital diaphragmatic hernia, abdominal wall and neural tube defects among US newborns. J Perinatol 32(11):861–868

    Article  CAS  PubMed  Google Scholar 

  25. Goyette P, Sumner JS, Milos R, Duncan AM, Rosenblatt DS, Matthews RG, Rozen R (1994) Human methylenetetrahydrofolate reductase: isolation of cDNA mapping and mutation identification. Nat Genet 7(4):551

    CAS  PubMed  Google Scholar 

  26. Liew SC, Gupta ED (2015) Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Genet 58(1):1–10. doi:10.1016/j.ejmg.2014.10.004

    Article  PubMed  Google Scholar 

  27. Carter TC, Pangilinan F, Troendle JF, Molloy AM, VanderMeer J, Mitchell A, Kirke PN, Conley MR, Shane B, Scott JM (2011) Evaluation of 64 candidate single nucleotide polymorphisms as risk factors for neural tube defects in a large Irish study population. Am J Med Genet Part A 155(1):14–21

    Article  Google Scholar 

  28. Pangilinan F, Molloy AM, Mills JL, Troendle JF, Parle-McDermott A, Signore C, O’Leary VB, Chines P, Seay JM, Geiler-Samerotte K (2012) Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects. BMC Med Genet 13(1):62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science and Technology Support Program of China (2013BAI12B01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Wang or Yihua Bao.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

L. Wu and X. Lu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Lu, X., Guo, J. et al. Association between ALDH1L1 gene polymorphism and neural tube defects in the Chinese Han population. Neurol Sci 37, 1049–1054 (2016). https://doi.org/10.1007/s10072-016-2527-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-016-2527-8

Keywords

Navigation