Skip to main content

Advertisement

Log in

Biological factors and age-dependence of primary motor cortex experimental plasticity

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

To evaluate whether the age-dependence of brain plasticity correlates with the levels of proteins involved in hormone and brain functions we executed a paired associative stimulation (PAS) protocol and blood tests. We measured the PAS-induced plasticity in the primary motor cortex. Blood levels of the brain-derived neurotrophic factor (BDNF), estradiol, the insulin-like growth factor (IGF)-1, the insulin-like growth factor binding protein (IGFBP)-3, progesterone, sex hormone-binding globulin (SHBG), testosterone, and the transforming growth factor beta 1 (TGF-β1) were determined in 15 healthy men and 20 healthy women. We observed an age-related reduction of PAS-induced plasticity in females that it is not present in males. In females, PAS-induced plasticity displayed a correlation with testosterone (p = 0.006) that became a trend after the adjustment for the age effect (p = 0.078). In males, IGF-1 showed a nominally significant correlation with the PAS-induced plasticity (p = 0.043). In conclusion, we observed that hormone blood levels (testosterone in females and IGF-1 in males) may be involved in the age-dependence of brain plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain J Neurol 123(Pt 3):572–584

    Article  Google Scholar 

  2. Rioult-Pedotti MS, Friedman D, Donoghue JP (2000) Learning-induced LTP in neocortex. Science 290(5491):533–536

    Article  CAS  PubMed  Google Scholar 

  3. Fathi D, Ueki Y, Mima T, Koganemaru S, Nagamine T, Tawfik A, Fukuyama H (2010) Effects of aging on the human motor cortical plasticity studied by paired associative stimulation. Clin Neurophysiol Off J Int Feder Clin Neurophysiol 121(1):90–93. doi:10.1016/j.clinph.2009.07.048

    Article  Google Scholar 

  4. Muller-Dahlhaus JF, Orekhov Y, Liu Y, Ziemann U (2008) Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation. Exp Brain Res Exper Hirnforschung Exp Cereb 187(3):467–475. doi:10.1007/s00221-008-1319-7

    Article  Google Scholar 

  5. Tecchio F, Zappasodi F, Pasqualetti P, De Gennaro L, Pellicciari MC, Ercolani M, Squitti R, Rossini PM (2008) Age dependence of primary motor cortex plasticity induced by paired associative stimulation. Clin Neurophysiol Off J Int Feder Clin Neurophysiol 119(3):675–682. doi:10.1016/j.clinph.2007.10.023

    Article  CAS  Google Scholar 

  6. Witte AV, Kurten J, Jansen S, Schirmacher A, Brand E, Sommer J, Floel A (2012) Interaction of BDNF and COMT polymorphisms on paired-associative stimulation-induced cortical plasticity. J Neurosci Off J Soc Neurosci 32(13):4553–4561. doi:10.1523/JNEUROSCI.6010-11.2012

    Article  CAS  Google Scholar 

  7. List J, Albers J, Kurten J, Schwindt A, Wilbers E, Floel A (2012) Reperfusion does not improve impaired rapid-onset cortical plasticity in patients with severe stenosis of the internal carotid artery. PLoS ONE 7(7):e41004. doi:10.1371/journal.pone.0041004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Conde V, Vollmann H, Sehm B, Taubert M, Villringer A, Ragert P (2012) Cortical thickness in primary sensorimotor cortex influences the effectiveness of paired associative stimulation. NeuroImage 60(2):864–870. doi:10.1016/j.neuroimage.2012.01.052

    Article  PubMed  Google Scholar 

  9. List J, Kubke JC, Lindenberg R, Kulzow N, Kerti L, Witte V, Floel A (2013) Relationship between excitability, plasticity and thickness of the motor cortex in older adults. NeuroImage 83C:809–816. doi:10.1016/j.neuroimage.2013.07.033

    Article  Google Scholar 

  10. McEwen BS, Coirini H, Westlind-Danielsson A, Frankfurt M, Gould E, Schumacher M, Woolley C (1991) Steroid hormones as mediators of neural plasticity. J Steroid Biochem Mol Biol 39(2):223–232

    Article  CAS  PubMed  Google Scholar 

  11. Pellicciari MC, Miniussi C, Rossini PM, De Gennaro L (2009) Increased cortical plasticity in the elderly: changes in the somatosensory cortex after paired associative stimulation. Neuroscience 163(1):266–276. doi:10.1016/j.neuroscience.2009.06.013

    Article  CAS  PubMed  Google Scholar 

  12. McCarthy MM, Nugent BM (2013) Epigenetic contributions to hormonally mediated sexual differentiation of the brain. J Neuroendocrinol. doi:10.1111/jne.12072

    PubMed  Google Scholar 

  13. Kritzer MF, Creutz LM (2008) Region and sex differences in constituent dopamine neurons and immunoreactivity for intracellular estrogen and androgen receptors in mesocortical projections in rats. J Neurosci Off J Soc Neurosci 8(38):9525–9535. doi:10.1523/JNEUROSCI.2637-08.2008

    Article  Google Scholar 

  14. Carvalho-Netto EF, Myers B, Jones K, Solomon MB, Herman JP (2011) Sex differences in synaptic plasticity in stress-responsive brain regions following chronic variable stress. Physiol Behav 104(2):242–247. doi:10.1016/j.physbeh.2011.01.024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gorbet DJ, Sergio LE (2007) Preliminary sex differences in human cortical BOLD fMRI activity during the preparation of increasingly complex visually guided movements. Euro J Neurosci 25(4):1228–1239. doi:10.1111/j.1460-9568.2007.05358.x

    Article  Google Scholar 

  16. Bayer U, Hausmann M (2011) Sex hormone therapy and functional brain plasticity in postmenopausal women. Neuroscience 191:118–128. doi:10.1016/j.neuroscience.2011.03.034

    Article  CAS  PubMed  Google Scholar 

  17. Boccardi M, Ghidoni R, Govoni S, Testa C, Benussi L, Bonetti M, Binetti G, Frisoni GB (2006) Effects of hormone therapy on brain morphology of healthy postmenopausal women: a Voxel-based morphometry study. Menopause 13(4):584–591. doi:10.1097/01.gme.0000196811.88505.10

    Article  PubMed  Google Scholar 

  18. Ghidoni R, Boccardi M, Benussi L, Testa C, Villa A, Pievani M, Gigola L, Sabattoli F, Barbiero L, Frisoni GB, Binetti G (2006) Effects of estrogens on cognition and brain morphology: involvement of the cerebellum. Maturitas 54(3):222–228. doi:10.1016/j.maturitas.2005.11.002

    Article  CAS  PubMed  Google Scholar 

  19. Benarroch EE (2012) Insulin-like growth factors in the brain and their potential clinical implications. Neurology 79(21):2148–2153. doi:10.1212/WNL.0b013e3182752eef

    Article  PubMed  Google Scholar 

  20. Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijevic MR, Hallett M, Katayama Y, Lucking CH et al (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91(2):79–92

    Article  CAS  PubMed  Google Scholar 

  21. Ridding MC, Taylor JL (2001) Mechanisms of motor-evoked potential facilitation following prolonged dual peripheral and central stimulation in humans. J Physiol 537(Pt 2):623–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kitano J, Ishikawa A, Lema SC (2014) Integrated genomics approaches in evolutionary and ecological endocrinology. Adv Exp Med Biol 781:299–319. doi:10.1007/978-94-007-7347-9_15

    Article  CAS  PubMed  Google Scholar 

  23. Bjerner J, Biernat D, Fossa SD, Bjoro T (2009) Reference intervals for serum testosterone, SHBG, LH and FSH in males from the NORIP project. Scandinavian journal of clinical and laboratory investigation 69(8):873–879 e871–e811. doi:10.3109/00365510903380886

  24. Haring R, Hannemann A, John U, Radke D, Nauck M, Wallaschofski H, Owen L, Adaway J, Keevil BG, Brabant G (2012) Age-specific reference ranges for serum testosterone and androstenedione concentrations in women measured by liquid chromatography-tandem mass spectrometry. J Clin Endocrinol Metab 97(2):408–415. doi:10.1210/jc.2011-2134

    Article  CAS  PubMed  Google Scholar 

  25. Milewicz A, Krzyzanowska-Swiniarska B, Miazgowski T, Jedrzejuk D, Arkowska A, Mieszczanowicz U, Bar-Andziak E (2013) The reference values of sex hormones and SHBG serum levels in subjects over 65 years old—The PolSenior Study. Endokrynologia Polska 64(2):82–93

    CAS  PubMed  Google Scholar 

  26. Sowers MF, Beebe JL, McConnell D, Randolph J, Jannausch M (2001) Testosterone concentrations in women aged 25–50 years: associations with lifestyle, body composition, and ovarian status. Am J Epidemiol 153(3):256–264

    Article  CAS  PubMed  Google Scholar 

  27. Yasui T, Matsui S, Tani A, Kunimi K, Yamamoto S, Irahara M (2012) Androgen in postmenopausal women. J Med Invest JMI 59(1–2):12–27

    Article  PubMed  Google Scholar 

  28. Gillies GE, McArthur S (2010) Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev 62(2):155–198. doi:10.1124/pr.109.002071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Konkle AT, Balthazart J (2011) Sex differences in the rapid control of aromatase activity in the quail preoptic area. J Neuroendocrinol 23(5):424–434. doi:10.1111/j.1365-2826.2011.02121.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Witte AV, Savli M, Holik A, Kasper S, Lanzenberger R (2010) Regional sex differences in grey matter volume are associated with sex hormones in the young adult human brain. NeuroImage 49(2):1205–1212. doi:10.1016/j.neuroimage.2009.09.046

    Article  CAS  PubMed  Google Scholar 

  31. Peper JS, van den Heuvel MP, Mandl RC, Hulshoff Pol HE, van Honk J (2011) Sex steroids and connectivity in the human brain: a review of neuroimaging studies. Psychoneuroendocrinology 36(8):1101–1113. doi:10.1016/j.psyneuen.2011.05.004

    Article  CAS  PubMed  Google Scholar 

  32. Henderson VW (2011) Gonadal hormones and cognitive aging: a midlife perspective. Women’s Health 7(1):81–93. doi:10.2217/whe.10.87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kocoska-Maras L, Radestad AF, Carlstrom K, Backstrom T, von Schoultz B, Hirschberg AL (2013) Cognitive function in association with sex hormones in postmenopausal women. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol 29(1):59–62. doi:10.3109/09513590.2012.705385

    Article  CAS  Google Scholar 

  34. Birzniece V, Sutanto S, Ho KK (2012) Gender difference in the neuroendocrine regulation of growth hormone axis by selective estrogen receptor modulators. J Clin Endocrinol Metab 97(4):E521–E527. doi:10.1210/jc.2011-3347

    Article  CAS  PubMed  Google Scholar 

  35. Deak F, Sonntag WE (2012) Aging, synaptic dysfunction, and insulin-like growth factor (IGF)-1. J Gerontol A Biol Sci Med Sci 67(6):611–625. doi:10.1093/gerona/gls118

    Article  PubMed  Google Scholar 

  36. Trejo JL, Piriz J, Llorens-Martin MV, Fernandez AM, Bolos M, LeRoith D, Nunez A, Torres-Aleman I (2007) Central actions of liver-derived insulin-like growth factor I underlying its pro-cognitive effects. Mol Psychiatry 12(12):1118–1128. doi:10.1038/sj.mp.4002076

    Article  CAS  PubMed  Google Scholar 

  37. Maya-Vetencourt JF, Baroncelli L, Viegi A, Tiraboschi E, Castren E, Cattaneo A, Maffei L (2012) IGF-1 restores visual cortex plasticity in adult life by reducing local GABA levels. Neural Plast 2012:250421. doi:10.1155/2012/250421

    PubMed Central  PubMed  Google Scholar 

  38. Sonntag WE, Deak F, Ashpole N, Toth P, Csiszar A, Freeman W, Ungvari Z (2013) Insulin-like growth factor-1 in CNS and cerebrovascular aging. Front Aging Neurosci 5:27. doi:10.3389/fnagi.2013.00027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Angelini A, Bendini C, Neviani F, Bergamini L, Manni B, Trenti T, Rovati R, Neri M (2009) Insulin-like growth factor-1 (IGF-1): relation with cognitive functioning and neuroimaging marker of brain damage in a sample of hypertensive elderly subjects. Arch Gerontol Geriatr 49(Suppl 1):5–12. doi:10.1016/j.archger.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  40. Voss MW, Erickson KI, Prakash RS, Chaddock L, Kim JS, Alves H, Szabo A, Phillips SM, Wojcicki TR, Mailey EL, Olson EA, Gothe N, Vieira-Potter VJ, Martin SA, Pence BD, Cook MD, Woods JA, McAuley E, Kramer AF (2013) Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav Immun 28:90–99. doi:10.1016/j.bbi.2012.10.021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Ding Q, Vaynman S, Akhavan M, Ying Z, Gomez-Pinilla F (2006) Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140(3):823–833. doi:10.1016/j.neuroscience.2006.02.084

    Article  CAS  PubMed  Google Scholar 

  42. Trejo JL, Carro E, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci Off J Soc Neurosci 21(5):1628–1634

    CAS  Google Scholar 

  43. Al-Delaimy WK, von Muhlen D, Barrett-Connor E (2009) Insulinlike growth factor-1, insulinlike growth factor binding protein-1, and cognitive function in older men and women. J Am Geriatr Soc 57(8):1441–1446. doi:10.1111/j.1532-5415.2009.02343.x

    Article  PubMed Central  PubMed  Google Scholar 

  44. Fernandez-Galaz MC, Morschl E, Chowen JA, Torres-Aleman I, Naftolin F, Garcia-Segura LM (1997) Role of astroglia and insulin-like growth factor-I in gonadal hormone-dependent synaptic plasticity. Brain Res Bull 44(4):525–531

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by: (1) PNR-CNR Aging Program 2012–2014; (2) Ministry of Health Cod. GR-2008-1138642 [ProSIA] and Grant no. RF 2003/38; (3) MIUR Prot. 2010SH7H3F ‘Functional connectivity and neuroplasticity in physiological and pathological aging [ConnAge]’. We thank all healthy volunteers for their time to participate to the study. We also thank Patrizio Pasqualetti for better defining the confidence limits of our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franca Tecchio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polimanti, R., Simonelli, I., Zappasodi, F. et al. Biological factors and age-dependence of primary motor cortex experimental plasticity. Neurol Sci 37, 211–218 (2016). https://doi.org/10.1007/s10072-015-2388-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-015-2388-6

Keywords

Navigation