Skip to main content
Log in

Association of TLR4 gene polymorphisms with sporadic Parkinson’s disease in a Han Chinese population

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is considered as a multifactorial disorder involving complex interactions between genetic and environmental factors, while previous studies point to a pivotal role of neuroinflammation in the pathophysiology of PD. As a member of pattern recognition receptors, TLR4 plays an important role in the immune response and inflammatory responses. Growing evidences suggest that mutation of TLR4 gene may be connected with the development of PD. The objective of this study was to evaluate whether genetic polymorphisms of the TLR4 gene are associated with PD susceptibility. We genotyped three single-nucleotide polymorphisms of the TLR4 gene (rs1927911, rs1927914 and rs10116253) by polymerase chain reaction and restriction fragment length polymorphism (PCR–RFLP) in unrelated 380 PD patients and 380 healthy-matched controls. Our study revealed that rs1927914 C allele carriers and C allele were probably related to a decreased risk of PD (p = 0.032 and p = 0.028, respectively) as well as male PD (p = 0.034) and early-onset PD (EOPD) (p = 0.023). In addition, there were significant differences in genotype and allele distribution in male PD patients and its healthy-matched control subgroup (p = 0.035 and p = 0.012, respectively). For rs1927911 and rs10116253 polymorphisms, genotype or allele frequencies did not differ between groups. Our data suggest that the TLR4 gene might contribute to the risk of developing PD in Han Chinese and rs1927914 polymorphism may be a protective factor for sporadic PD, male PD and EOPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reeve A, Simcox E, Turnbull D (2014) Ageing and Parkinson’s disease: Why is advancing age the biggest risk factor? Ageing Res Rev. doi:10.1016/j.arr.2014.01.004

    PubMed Central  PubMed  Google Scholar 

  2. Zhang ZX, Roman GC, Hong Z, Wu CB, Qu QM, Huang JB, Zhou B, Geng ZP, Wu JX, Wen HB, Zhao H, Zahner GE (2005) Parkinson’s disease in China: prevalence in Beijing, Xian, and Shanghai. Lancet 365(9459):595–597. doi:10.1016/s0140-6736(05)17909-4

    Article  PubMed  Google Scholar 

  3. Jellinger KA (2011) Synuclein deposition and non-motor symptoms in Parkinson disease. J Neurol Sci 310(1–2):107–111. doi:10.1016/j.jns.2011.04.012

    Article  CAS  PubMed  Google Scholar 

  4. Chaudhuri KR, Healy DG, Schapira AH (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5(3):235–245. doi:10.1016/s1474-4422(06)70373-8

    Article  PubMed  Google Scholar 

  5. Sung VW, Nicholas AP (2013) Nonmotor symptoms in Parkinson’s disease: expanding the view of Parkinson’s disease beyond a pure motor, pure dopaminergic problem. Neurol Clin 31(3 Suppl):S1–16. doi:10.1016/j.ncl.2013.04.013

    Article  PubMed  Google Scholar 

  6. Gao HM, Hong JS (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29(8):357–365. doi:10.1016/j.it.2008.05.002

    Article  CAS  PubMed  Google Scholar 

  7. Qian L, Flood PM, Hong JS (2010) Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J Neural Transm (Vienna, Austria: 1996) 117(8):971–979. doi:10.1007/s00702-010-0428-1

    Article  CAS  Google Scholar 

  8. Russo I, Bubacco L, Greggio E (2014) LRRK2 and neuroinflammation: partners in crime in Parkinson’s disease? J Neuroinflamm 11:52. doi:10.1186/1742-2094-11-52

    Article  Google Scholar 

  9. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8(4):382–397. doi:10.1016/s1474-4422(09)70062-6

    Article  CAS  PubMed  Google Scholar 

  10. Ziakas PD, Prodromou ML, El Khoury J, Zintzaras E, Mylonakis E (2013) The role of TLR4 896 A>G and 1196 C>T in susceptibility to infections: a review and meta-analysis of genetic association studies. PLoS ONE 8(11):e81047. doi:10.1371/journal.pone.0081047

    Article  PubMed Central  PubMed  Google Scholar 

  11. Creagh EM, O’Neill LA (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27(8):352–357. doi:10.1016/j.it.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  12. Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA 100(14):8514–8519. doi:10.1073/pnas.1432609100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Barton GM (2008) A calculated response: control of inflammation by the innate immune system. J Clin Investig 118(2):413–420. doi:10.1172/jci34431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Drouin-Ouellet J, Gibrat C, Bousquet M, Calon F, Kriz J, Cicchetti F (2011) The role of the MYD88-dependent pathway in MPTP-induced brain dopaminergic degeneration. J Neuroinflamm 8:137. doi:10.1186/1742-2094-8-137

    Article  CAS  Google Scholar 

  15. Zakeri S, Pirahmadi S, Mehrizi AA, Djadid ND (2011) Genetic variation of TLR-4, TLR-9 and TIRAP genes in Iranian malaria patients. Malaria J 10:77. doi:10.1186/1475-2875-10-77

    Article  CAS  Google Scholar 

  16. Noelker C, Morel L, Lescot T, Osterloh A, Alvarez-Fischer D, Breloer M, Henze C, Depboylu C, Skrzydelski D, Michel PP, Dodel RC, Lu L, Hirsch EC, Hunot S, Hartmann A (2013) Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Sci Rep 3:1393. doi:10.1038/srep01393

    Article  PubMed Central  PubMed  Google Scholar 

  17. Kutikhin AG (2011) Impact of Toll-like receptor 4 polymorphisms on risk of cancer. Hum Immunol 72(2):193–206. doi:10.1016/j.humimm.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  18. Yu JT, Miao D, Cui WZ, Ou JR, Tian Y, Wu ZC, Zhang W, Tan L (2012) Common variants in toll-like receptor 4 confer susceptibility to Alzheimer’s disease in a Han Chinese population. Curr Alzheimer Res 9(4):458–466

    Article  CAS  PubMed  Google Scholar 

  19. Reindl M, Lutterotti A, Ingram J, Schanda K, Gassner C, Deisenhammer F, Berger T, Lorenz E (2003) Mutations in the gene for toll-like receptor 4 and multiple sclerosis. Tissue Antigens 61(1):85–88

    Article  CAS  PubMed  Google Scholar 

  20. Chen YC, Yip PK, Huang YL, Sun Y, Wen LL, Chu YM, Chen TF (2012) Sequence variants of toll like receptor 4 and late-onset Alzheimer’s disease. PLoS ONE 7(12):e50771. doi:10.1371/journal.pone.0050771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Singh K, Singh VK, Agrawal NK, Gupta SK, Singh K (2013) Association of Toll-like receptor 4 polymorphisms with diabetic foot ulcers and application of artificial neural network in DFU risk assessment in type 2 diabetes patients. Biomed Res Int 2013:318686. doi:10.1155/2013/318686

    PubMed Central  PubMed  Google Scholar 

  22. Huang L, Yuan K, Liu J, Ren X, Dong X, Tian W, Jia Y (2014) Polymorphisms of the TLR4 gene and risk of gastric cancer. Gene 537(1):46–50. doi:10.1016/j.gene.2013.12.030

    Article  CAS  PubMed  Google Scholar 

  23. Daniel SE, Lees AJ (1993) Parkinson’s Disease Society Brain Bank, London: overview and research. J Neural Transm Suppl 39:165–172

    CAS  PubMed  Google Scholar 

  24. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17(5):427–442

    Article  CAS  PubMed  Google Scholar 

  25. Peterson LJ, Flood PM (2012) Oxidative stress and microglial cells in Parkinson’s disease. Mediators Inflamm 2012:401264. doi:10.1155/2012/401264

    Article  PubMed Central  PubMed  Google Scholar 

  26. Lee MS, Kim YJ (2007) Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem 76:447–480. doi:10.1146/annurev.biochem.76.060605.122847

    Article  CAS  PubMed  Google Scholar 

  27. Trotta T, Porro C, Calvello R, Panaro MA (2014) Biological role of Toll-like receptor-4 in the brain. J Neuroimmunol 268(1–2):1–12. doi:10.1016/j.jneuroim.2014.01.014

    Article  CAS  PubMed  Google Scholar 

  28. Beraud D, Twomey M, Bloom B, Mittereder A, Ton V, Neitzke K, Chasovskikh S, Mhyre TR, Maguire-Zeiss KA (2011) Alpha-synuclein alters Toll-like receptor expression. Front Neurosci 5:80. doi:10.3389/fnins.2011.00080

    Article  PubMed Central  PubMed  Google Scholar 

  29. Beraud D, Maguire-Zeiss KA (2012) Misfolded alpha-synuclein and Toll-like receptors: therapeutic targets for Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S17–20. doi:10.1016/s1353-8020(11)70008-6

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong Province in China and by Chinese National Human Genome Center, Beijing.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anmu Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Han, X., Xue, L. et al. Association of TLR4 gene polymorphisms with sporadic Parkinson’s disease in a Han Chinese population. Neurol Sci 36, 1659–1665 (2015). https://doi.org/10.1007/s10072-015-2227-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-015-2227-9

Keywords

Navigation