Skip to main content
Log in

Somatosensory evoked potentials and blood lactate levels

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

We compared, in 20 subjects, the effects of high blood lactate levels on amplitude and latency of P1, N1, P2 and N2 components of lower limb somatosensory evoked potential (SEP), an useful, noninvasive tool for assessing the transmission of the afferent volley from periphery up to the cortex. SEPs were recorded from CPz located over the somatosensory vertex and referenced to FPz with a clavicle ground. Measurements were carried out before, at the end as well as 10 and 20 min after the conclusion of a maximal exercise carried out on a mechanically braked cycloergometer. After the exercise, P2–N2 amplitudes as well as latency of P1 and N1 components showed small but significant reductions. On the contrary, latency of N2 component exhibited a significant increase after the exercise’s conclusion. These results suggest that blood lactate appears to have a protective effect against fatigue, at least at level of primary somatosensory cortex, although at the expense of efficiency of adjacent areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF (2007) Brain neurotransmitters in fatigue and overtraining. Appl Physiol Nutr Metab 32:857–864

    Article  CAS  PubMed  Google Scholar 

  2. Bangsbo J (1998) Quantification of anaerobic energy production during intense exercise. Med Sci Sports Exerc 130:47–52

    Article  Google Scholar 

  3. Medbø JI, Tabata I (1993) Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Appl Physiol 74:1654–1660

    Google Scholar 

  4. Dalsgaard MK, Ide K, Cai Y, Quistorff B, Secher NH (2002) The intent to exercise influences the cerebral O2/carbohydrate uptake ratio in humans. J Physiol 540:681–689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Dalsgaard MK, Quistorff B, Danielsen ER, Selmer C, Vogelsang T, Secher NH (2004) A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain. J Physiol 554:571–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–1555

    Article  CAS  PubMed  Google Scholar 

  7. Coco M, Di Corrado D, Calogero RA, Va Perciavalle, Maci T, Perciavalle V (2009) Attentional processes and blood lactate levels. Brain Res 1302:205–211

    Article  CAS  PubMed  Google Scholar 

  8. Coco M, Alagona G, Rapisarda G, Costanzo E, Calogero RA, Va Perciavalle, Perciavalle V (2010) Elevated blood lactate is associated with increased motor cortex excitability. Somatosens Mot Res. doi:10.3109/08990220903471765

    Google Scholar 

  9. Coco M, Alagona G, Va Perciavalle, Cicirata V, Perciavalle V (2011) Spinal cord excitability is not influenced by elevated blood lactate levels. Somatosens Mot Res 28:19–24

    Article  PubMed  Google Scholar 

  10. Coco M, Alagona G, Perciavalle Va, Rapisarda G, Costanzo E, Perciavalle V (2013) Brainstem excitability is not influenced by blood lactate levels. Somatosens Mot Res 30:90–95

    Article  PubMed  Google Scholar 

  11. Coco M, Caggia S, Musumeci G, Perciavalle V, Graziano AC, Pannuzzo G, Cardile V (2013) Sodium l-lactate differently affects brain-derived neurotrophic factor, inducible nitric oxide synthase, and heat shock protein 70 kDa production in human astrocytes and SH-SY5Y cultures. J Neurosci Res 91:313–320. doi:10.1002/jnr.23154

    Article  CAS  PubMed  Google Scholar 

  12. Coco M, Alagona G, De Maria G, Rapisarda G, Costanzo E, Perciavalle V, Va Perciavalle (2014) Relationship of high blood lactate levels with latency of visual-evoked potentials. Neurol Sci. doi:10.1007/s10072-014-2015-y

    PubMed  Google Scholar 

  13. Allison T, McCarthy G, Jones SJ, Jones SJ (1991) Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain 114:2465–2503

    Article  PubMed  Google Scholar 

  14. Kakigi R, Jones SJ (1986) Influence of concurrent tactile stimulation on somatosensory evoked potentials following posterior tibial nerve stimulation in man. Electroencephalogr Clin Neurophysiol 65:118–129

    Article  CAS  PubMed  Google Scholar 

  15. Kakigi R, Koyama S, Hoshiyama M, Shimojo M, Kitamura Y, Watanabe S (1995) Topography of somatosensory evoked magnetic fields following posterior tibial nerve stimulation. Electroencephalogr Clin Neurophysiol 95:127–134

    Article  CAS  PubMed  Google Scholar 

  16. Frot M, Mauguière F (1999) Timing and spatial distribution of somatosensory responses recorded in the upper bank of the sylvian fissure (SII area) in humans. Cereb Cortex 9:854–863

    Article  CAS  PubMed  Google Scholar 

  17. Frot M, Garcìa-Larrea L, Marc G, Mauguière F (2001) Responses of the suprasylvian (SII) cortex in humans to painful and innocuous stimuli. A study using intra-cerebral recordings. Pain 94:65–73

    Article  CAS  PubMed  Google Scholar 

  18. Hari R, Forss N (1999) Magnetoencephalography in the study of human somatosensory cortical processing. Phil Trans R Soc Lond B 354:1145–1154

    Article  CAS  Google Scholar 

  19. Kakigi R, Hoshiyama M, Shimojo M, Naka D, Yamasaki H, Watanabe S, Xiang J, Maeda K, Lam K, Itomi K, Nakamura A (2000) The somatosensory evoked magnetic fields. Prog Neurobiol 61:495–523

    Article  CAS  PubMed  Google Scholar 

  20. Green JM, McLester JR, Crews TR, Wickwire PJ, Pritchett RC, Redden A (2005) RPE-lactate dissociation during extended cycling. Eur J Appl Physiol 94:145–150

    Article  CAS  PubMed  Google Scholar 

  21. Mc Naughton LR, Thompson D, Philips G, Backx K, Crickmore L (2002) A comparison of the lactate Pro, Accusport, Analox GM7 and Kodak Ektachem lactate analysers in normal, hot and humid conditions. Int J Sports Med 23:130–135

    Article  CAS  PubMed  Google Scholar 

  22. Kristensen GB, Christensen NG, Thue G, Sandberg S (2005) Between-lot variation in external quality assessment of glucose: clinical importance and effect on participant performance evaluation. Clin Chem 51:1632–1636

    Article  CAS  PubMed  Google Scholar 

  23. DeLisa JA, Lee HJ, Lai KS, Spielhocz N, MacKenzie K (1994) Manual of nerve conduction velocity and and clinical neurophysiology, 3rd edn. Raven Press, New York, p 494

    Google Scholar 

  24. Seyal M, Emerson RG, Pedley TA (1983) Spinal and early scalp-recorded components of the somatosensory evoked potential following stimulation of the posterior tibial nerve. Electroencephalogr Clin Neurophysiol 55:320–330

    Article  CAS  PubMed  Google Scholar 

  25. Nuwer M (1998) Fundamentals of evoked potentials and common clinical applications today. Electroencephalogr Clin Neurophysiol 106:142–148

    Article  CAS  PubMed  Google Scholar 

  26. Barrett EF, Barrett JN (1982) Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential. J Physiol 323:117–144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lauritzen KH, Morland C, Puchades M, Holm-Hansen S, Hagelin EM, Lauritzen F, Attramadal H, Storm-Mathisen J, Gjedde A, Bergersen LH (2014) Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cereb Cortex 24(10):2784–2795. doi:10.1093/cercor/bht136

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Perciavalle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perciavalle, V., Alagona, G., De Maria, G. et al. Somatosensory evoked potentials and blood lactate levels. Neurol Sci 36, 1597–1601 (2015). https://doi.org/10.1007/s10072-015-2210-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-015-2210-5

Keywords

Navigation