Skip to main content

Advertisement

Log in

Resting-state fMRI functional connectivity: a new perspective to evaluate pain modulation in migraine?

  • NEUROIMAGING OF HEADACHES
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Resting-state (RS) functional magnetic resonance imaging (fMRI) is a relatively novel tool which explores connectivity between functionally linked, but anatomically separated, brain regions. The use of this technique has allowed the identification, at rest, of the main brain functional networks without requiring subjects to perform specific active tasks. Methodologically, several approaches can be applied for the analysis of RS fMRI, including seed-based, independent component analysis-based and/or cluster-based methods. The most consistently described RS network is the so-called “default mode network”. Using RS fMRI, several studies have identified functional connectivity abnormalities in migraine patients, mainly located at the level of the pain-processing network. RS functional connectivity is generally increased in pain-processing network, whereas is decreased in pain modulatory circuits. Significant abnormalities of RS functional connectivity occur also in affective networks, the default mode network and the executive control network. These results provide a strong characterization of migraine as a brain dysfunction affecting intrinsic connectivity of brain networks, possibly reflecting the impact of long lasting pain on brain function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sporns O, Kötter R (2004) Motifs in brain networks. PLoS Biol 2:1910–1918

    Article  CAS  Google Scholar 

  2. Hagmann P, Cammoun L, Gigandet X et al (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159

    Article  PubMed Central  PubMed  Google Scholar 

  3. Aertsen AM, Gerstein GL, Habib MK et al (1989) Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J Neurophysiol 61:900–917

    CAS  PubMed  Google Scholar 

  4. Friston KJ, Frith CD, Liddle PF et al (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13:5–14

    Article  CAS  PubMed  Google Scholar 

  5. Biswal B, Yetkin FZ, Haughton VM et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  CAS  PubMed  Google Scholar 

  6. Cordes D, Haughton VM, Arfanakis K et al (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am J Neuroradiol 22:1326–1333

    CAS  PubMed  Google Scholar 

  7. Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694

    Article  CAS  PubMed  Google Scholar 

  8. Peltier SJ, Noll DC (2002) T2 dependence of low frequency functional connectivity. NeuroImage 16:985–992

    Article  CAS  PubMed  Google Scholar 

  9. Hampson M, Peterson BS, Skudlarski P et al (2002) Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp 15:247–262

    Article  PubMed  Google Scholar 

  10. Hampson M, Olson IR, Leung HC et al (2004) Changes in functional connectivity of human MT/V5 with visual motion input. NeuroReport 15:1315–1319

    Article  PubMed  Google Scholar 

  11. Greicius M (2008) Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 21:424–430

    Article  PubMed  Google Scholar 

  12. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711

    Article  CAS  PubMed  Google Scholar 

  13. Beckmann CF, DeLuca M, Devlin JT et al (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013

    Article  PubMed Central  PubMed  Google Scholar 

  14. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  15. Seeley WW, Menon V, Schatzberg AF et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. De Luca M, Beckmann CF, De Stefano N et al (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29:1359–1367

    Article  PubMed  Google Scholar 

  18. Damoiseaux JS, Rombouts SA, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Smith SM, Fox PT, Miller KL et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hampson M, Tokoglu F, Sun Z et al (2006) Connectivity-behavior analysis reveals that functional connectivity between left BA39 and Broca’s area varies with reading ability. Neuroimage 31:513–519

    Article  PubMed  Google Scholar 

  21. Van den Heuvel MP, Mandl RCW, Kahn RS et al (2009) Functionally linked resting state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30:3127–3141

    Article  PubMed  Google Scholar 

  22. Rombouts SA, Barkhof F, Goekoop R et al (2005) Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp 26:231–239

    Article  PubMed  Google Scholar 

  23. Lowe MJ, Beall EB, Sakaie KE et al (2008) Resting state sensorimotor functional connectivity in multiple sclerosis inversely correlates with transcallosal motor pathway transverse diffusivity. Hum Brain Mapp 29:818–827

    Article  PubMed  Google Scholar 

  24. Mohammadi B, Kollewe K, Samii A et al (2009) Changes of resting state brain networks in amyotrophic lateral sclerosis. Exp Neurol 217:147–153

    Article  PubMed  Google Scholar 

  25. Liu Y, Liang M, Zhou Y et al (2008) Disrupted small-world networks in schizophrenia. Brain 131:945

    Article  PubMed  Google Scholar 

  26. Seeley WW, Crawford RK, Zhou J et al (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Baliki MN, Geha PY, Apkarian AV et al (2008) Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 28:1398–1403

    Article  CAS  PubMed  Google Scholar 

  28. Napadow V, LaCount L, Park K et al (2010) Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum 62:2545–2555

    Article  PubMed Central  PubMed  Google Scholar 

  29. Mainero C, Boshyan J, Hadjikhani N (2011) Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol 70:838–845

    Article  PubMed Central  PubMed  Google Scholar 

  30. Yu D, Yuan K, Zhao L et al (2012) Regional homogeneity abnormalities in patients with interictal migraine without aura: a resting-state study. NMR Biomed 2:806–812

    Article  Google Scholar 

  31. Xue T, Yuan K, Zhao L et al (2012) Intrinsic brain network abnormalities in migraines without aura revealed in resting-state fMRI. PLoS ONE 7:52927

    Article  Google Scholar 

  32. Xue T, Yuan K, Cheng P et al (2013) Alterations of regional spontaneous neuronal activity and corresponding brain circuit changes during resting state in migraine without aura. NMR Biomed 26:1051–1058

    Article  PubMed  Google Scholar 

  33. Tessitore A, Russo A, Giordano A et al (2013) Disrupted default mode network connectivity in migraine without aura. J Headache Pain 14:89

    Article  PubMed Central  PubMed  Google Scholar 

  34. Chanraud S, Di Scala G, Dilharreguy B et al (2014) Brain functional connectivity and morphology changes in medication-overuse headache: clue for dependence-related processes? Cephalalgia 34:605–615

    Article  CAS  PubMed  Google Scholar 

  35. Hougaard A, Amin FM, Magon S et al (2015) No abnormalities of intrinsic brain connectivity in the interictal phase of migraine with aura. Eur J Neurol. doi:10.1111/ene.12636 (Epub ahead of print)

    PubMed  Google Scholar 

  36. Messina R, Rocca MA, Colombo B et al (2015) Resting state functional connectivity abnormalities in pediatric patients with migraine. Presented as oral communication, American Academy of Neurology, Washington DC, 2015

  37. Satterthwaite TD, Wolf DH, Loughead J et al (2012) Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. Neuroimage 60:623–632

    Article  PubMed Central  PubMed  Google Scholar 

  38. Satterthwaite TD, Elliott MA, Gerraty RT et al (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64:240–256

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors certify that there is no actual or potential conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Colombo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombo, B., Rocca, M.A., Messina, R. et al. Resting-state fMRI functional connectivity: a new perspective to evaluate pain modulation in migraine?. Neurol Sci 36 (Suppl 1), 41–45 (2015). https://doi.org/10.1007/s10072-015-2145-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-015-2145-x

Keywords

Navigation