Skip to main content

Genome-wide pathway analysis of a genome-wide association study on Alzheimer’s disease

Abstract

The aims of this study were to identify candidate single nucleotide polymorphisms (SNPs) and mechanisms of Alzheimer’s disease (AD) and to generate SNP to gene to pathway hypotheses. An AD genome-wide association study (GWAS) dataset that included 370,542 SNPs in 1,000 cases and 1,000 controls of European descent was used in this study. Identify Candidate Causal SNPs and Pathway (ICSNPathway) analysis was applied to the GWAS dataset. ICSNPathway analysis identified 3 candidate SNPs and 2 pathways, which provided 3 hypothetical biological mechanisms. The strongest hypothetical biological mechanism was rs8076604 [non-synonymous coding (deleterious)] to MYO18A to negative regulation of programmed cell death [nominal P < 0.001, false discovery rate (FDR) <0.043]. The second was rs2811226 (regulatory region) to ANXA1 to negative regulation of programmed cell death (nominal P < 0.001, FDR 0.043). The third was rs3734166 (non-synonymous coding) to CDC25C to M phase of the mitotic cell cycle (nominal P < 0.001, FDR 0.049). By applying the ICSNPathway analysis to the AD GWAS meta-analysis data, three candidate SNPs, three genes (MYO18A, ANXA1, CDC25C), 2 pathways involving negative regulation of programmed cell death and 1 pathway involving the M phase of the mitotic cell cycle were identified, which may contribute to AD susceptibility.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Bertram L, Tanzi RE (2012) The genetics of Alzheimer’s disease. Prog Mol Biol Transl Sci 107:79–100

    CAS  Article  PubMed  Google Scholar 

  2. Li H, Wetten S, Li L, St Jean PL, Upmanyu R, Surh L et al (2008) Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol 65(1):45–53

    Article  PubMed  Google Scholar 

  3. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41(10):1088–1093

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  4. Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363(2):166–176

    CAS  Article  PubMed  Google Scholar 

  5. Johnson AD, O’Donnell CJ (2009) An open access database of genome-wide association results. BMC Med Genet 10:6

    PubMed Central  Article  PubMed  Google Scholar 

  6. Sherva R, Tripodis Y, Bennett DA, Chibnik LB, Crane PK, de Jager PL et al (2014) Genome-wide association study of the rate of cognitive decline in Alzheimer’s disease. Alzheimers Dement 10(1):45–52

    Article  PubMed  Google Scholar 

  7. Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303(18):1832–1840

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  8. Hong MG, Alexeyenko A, Lambert JC, Amouyel P, Prince JA (2010) Genome-wide pathway analysis implicates intracellular transmembrane protein transport in Alzheimer disease. J Hum Genet 55(10):707–709

    CAS  Article  PubMed  Google Scholar 

  9. Liu G, Jiang Y, Wang P, Feng R, Jiang N, Chen X et al (2012) Cell adhesion molecules contribute to Alzheimer’s disease: multiple pathway analyses of two genome-wide association studies. J Neurochem 120(1):190–198

    CAS  Article  PubMed  Google Scholar 

  10. Borovecki F, Klepac N, Muck-Seler D, Hajnsek S, Mubrin Z, Pivac N (2011) Unraveling the biological mechanisms in Alzheimer’s disease–lessons from genomics. Prog Neuropsychopharmacol Biol Psychiatry 35(2):340–347

    CAS  Article  PubMed  Google Scholar 

  11. Wang K, Li M, Hakonarson H (2010) Analysing biological pathways in genome-wide association studies. Nat Rev Genet 11(12):843–854

    CAS  Article  PubMed  Google Scholar 

  12. Lee YH, Song GG (2012) Pathway analysis of genome-wide association studies on uric acid concentrations. Hum Immunol 73(8):805–810

    CAS  Article  PubMed  Google Scholar 

  13. Zhang K, Chang S, Cui S, Guo L, Zhang L, Wang J (2011) ICSNPathway: identify candidate causal SNPs and pathways from genome-wide association study by one analytical framework. Nucleic Acids Res 39:W437–W443

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  14. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:D355–D360

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  15. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  16. Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CJ, de Bakker PI (2008) SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24(24):2938–2939

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  17. Zeggini E, Ioannidis JP (2009) Meta-analysis in genome-wide association studies. Pharmacogenomics 10(2):191–201

    PubMed Central  Article  PubMed  Google Scholar 

  18. Elbers CC, van Eijk KR, Franke L, Mulder F, van der Schouw YT, Wijmenga C et al (2009) Using genome-wide pathway analysis to unravel the etiology of complex diseases. Genet Epidemiol 33(5):419–431

    Article  PubMed  Google Scholar 

  19. Fridley BL, Biernacka JM (2011) Gene set analysis of SNP data: benefits, challenges, and future directions. Eur J Hum Genet 19(8):837–843

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  20. Pedroso I, Breen G (2011) Gene set analysis and network analysis for genome-wide association studies. Cold Spring Harb Protoc 2011(9):pdb.top065581

    Article  PubMed  Google Scholar 

  21. Kim HR, Park MK, Cho ML, Kim KW, Oh HJ, Park JS et al (2010) Induction of macrophage migration inhibitory factor in ConA-stimulated rheumatoid arthritis synovial fibroblasts through the P38 map kinase-dependent signaling pathway. Korean J Intern Med 25(3):317–326

    PubMed Central  Article  PubMed  Google Scholar 

  22. Hsu RM, Tsai MH, Hsieh YJ, Lyu PC, Yu JS (2010) Identification of MYO18A as a novel interacting partner of the PAK2/betaPIX/GIT1 complex and its potential function in modulating epithelial cell migration. Mol Biol Cell 21(2):287–301

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  23. McArthur S, Cristante E, Paterno M, Christian H, Roncaroli F, Gillies GE et al (2010) Annexin A1: a central player in the anti-inflammatory and neuroprotective role of microglia. J Immunol 185(10):6317–6328

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  24. Chang KH, Vincent F, Shah K (2012) Deregulated Cdk5 triggers aberrant activation of cell cycle kinases and phosphatases inducing neuronal death. J Cell Sci 125(21):5124–5137

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge investigators for sharing their valuable GWAS data.

Conflict of interest

The authors declare that they have no vested interest that could be construed to have inappropriately influenced this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Ho Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.H., Song, G.G. Genome-wide pathway analysis of a genome-wide association study on Alzheimer’s disease. Neurol Sci 36, 53–59 (2015). https://doi.org/10.1007/s10072-014-1885-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-014-1885-3

Keywords

  • Alzheimer’s disease
  • Genome-wide association study
  • Pathway-based analysis