Skip to main content
Log in

Maintenance and manipulation of object sequences in working memory: a lifespan study

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Many studied reported that working memory components receive remarkable changes during lifespan. In order to better investigate this, we evaluated working memory components on human subjects belonging to five groups (10 subjects each) at different ages 6, 8 and 10 years old, young adult (age) and old adult (age). Our pattern of results shows a major transition in object sequence manipulation performance between ages 8 and 10 years. If related to young adults results, both 10-year-old children and old adults differed in accuracy and RT (specificare cosa significa) in both maintenance and manipulation conditions. In particular, young adults and old adults differ in RTs in the manipulation condition. Our results also suggest that a change in response strategy from 6 to 8 years of age, to prioritize accuracy may be present. Our findings appear consistent with recent neuroscientific findings, and lead to novel predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alloway TP, Gathercole SE, Willis C, Adams AM (2004) A structural analysis of working memory and related cognitive skills in early childhood. J Exp Child Psychol 87:85–106

    Article  PubMed  Google Scholar 

  2. Alloway TP, Gathercole SE, Pickering SJ (2006) Verbal and visuospatial short-term and working memory in children: are they separable? Child Dev 77:1698–1716

    Article  PubMed  Google Scholar 

  3. Baddeley AD (2000) Working memory: the interface between memory and cognition. In: Gazzaniga M (ed) Cognitive neuroscience: a reader. Blackwell Publishers Ltd, Oxford, pp 292–304

    Google Scholar 

  4. Baddeley AD, Hitch GJ (1974) Working memory. In: Bower GA 284 (ed) The psychology of learning and motivation. Academic Press, 285 New York, pp 47–89

    Google Scholar 

  5. Banich MT, Passarotti AM, Janes D (2000) Interhemispheric interaction during childhood: I Neurologically intact children. Dev Neuropsychol 18:33–51

    Article  CAS  PubMed  Google Scholar 

  6. Braver TS, Barch DM (2002) A theory of cognitive control, aging cognition, and neuromodulation. Neurosci Biobehav Rev 26:809–817

    Article  PubMed  Google Scholar 

  7. Braver TS, West R (2008) Working memory, executive control, and aging. In: Craik FIM, Salthouse TA (eds) The handbook of aging cognition. Psychology Press, New York, pp 311–372

    Google Scholar 

  8. Braver TS, Barch DM, Kelley WM, Buckner RL, Cohen NJ, Miezin FM, Snyder AZ, Ollinger JM, Akbudak E, Conturo TE, Petersen SE (2001) Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks. Neuroimage 14:48–59

    Article  CAS  PubMed  Google Scholar 

  9. Cansino S, Hernández-Ramos E, Estrada-Manilla C, Torres-Trejo F, Martínez-Galindo JG, Ayala-Hernández M, Gómez-Fernández T, Osorio D, Cedillo-Tinoco M, Garcés-Flores L, Beltrán-Palacios K, García-Lázaro HG, García-Gutiérrez F, Cadena-Arenas Y, Fernández-Apan L, Bärtschi A, Rodríguez-Ortiz MD (2013) The decline of verbal and visuospatial working memory across the adult life span. Age (Dordr) 35:2283–2302

    Article  Google Scholar 

  10. Crone EA, Wendelken C, Donohue S, van Leijenhorst L, Bunge SA (2006) Neurocognitive development of the ability to manipulate information in working memory. Proc Natl Acad Sci USA 103:9315–9320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. D’Esposito M, Postle BR (1999) The dependence of span and delayed-response performance on prefrontal cortex. Neuropsychologia 37:1303–1315

    Article  PubMed  Google Scholar 

  12. Gathercole SE (1999) Cognitive approaches to the development of short-term memory. Trends Cogn Sci 3:410–418

    Article  PubMed  Google Scholar 

  13. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H et al (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863

    Article  CAS  PubMed  Google Scholar 

  14. Hitch GJ, Towse JN, Hutton U (2001) What limits children’s working memory span? Theoretical accounts and applications for scholastic development. J Exp Psychol Gen 130(184–198):10

    Google Scholar 

  15. Hutton UMZ, Towse JN (2001) Short-term memory and working memory as indices of children’s cognitive skills. Memory 9(4–6):383–394. doi:10.1080/09658210042000058

    Article  CAS  Google Scholar 

  16. Liu HL, Liao WT, Fang SY, Chu TC, Tan LH (2004) Correlation between temporal response of fMRI and fast reaction time in a language task. Magn Reson Imaging 22:451–455

    Article  PubMed  Google Scholar 

  17. Olesen PJ, Westerberg H, Klingberg T (2004) Increased prefrontal and parietal activity after training of working memory. Nat Neurosci 7:75–79

    Article  CAS  PubMed  Google Scholar 

  18. Owen AM, Doyon J, Petrides M, Evans AC (1996) Planning and spatial working memory: a positron emission tomography study in humans. Eur J Neurosci 8:353–364

    Article  CAS  PubMed  Google Scholar 

  19. Pickering SJ (2001) The development of visuo-spatial working memory. Memory 9:423–432

    Article  CAS  Google Scholar 

  20. Pickering SJ, Gathercole SE, Peaker SM (1998) Verbal and visuospatial short-term memory in children: evidence for common and distinct mechanisms. Mem Cogn 26:1117–1130

    Article  CAS  Google Scholar 

  21. Rubia K, Smith AB, Brammer MJ, Taylor E (2003) Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage 20:351–358

    Article  PubMed  Google Scholar 

  22. Schneider W, Kron V, Hünnerkopf M, Krajewski K (2004) The development of young children’s memory strategies: first findings from the Würzburg Longitudinal Memory Study. J Exp Child Psychol 88:193–209

    Article  PubMed  Google Scholar 

  23. Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283:1657–1661

    Article  CAS  PubMed  Google Scholar 

  24. Smith AB, Taylor E, Brammer M, Rubia K (2004) Neural correlates of switching set as measured in fast, event-related functional magnetic resonance imaging. Hum Brain Mapp 21:247–256

    Article  PubMed  Google Scholar 

  25. Shing YLT, Lindenberger U, Diamond A, Li S-C, Davidson MC (2010) Memory maintenance and inhibitory control differentiate from early childhood to adolescence. Dev Neuropsychol 35:679–697

    Article  PubMed Central  PubMed  Google Scholar 

  26. Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW (2004) Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 24:8223–8231

    Article  CAS  PubMed  Google Scholar 

  27. Van Petten C, Plante E, Davidson PS, Kuo TY, Bajuscak L, Glisky EL (2004) Memory and executive function in older adults: relationships with temporal and prefrontal gray matter volumes and white matter hyperintensities. Neuropsychologia 42(10):1313–1335

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Federico.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Federico, F., Delogu, F. & Raffone, A. Maintenance and manipulation of object sequences in working memory: a lifespan study. Neurol Sci 35, 1883–1887 (2014). https://doi.org/10.1007/s10072-014-1851-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-014-1851-0

Keywords

Navigation