Skip to main content

Advertisement

Log in

Effects of exposure to high glucose on primary cultured hippocampal neurons: involvement of intracellular ROS accumulation

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Recent studies showed that hyperglycemia is the main trigger of diabetic cognitive impairment and can cause hippocampus abnormalities. The goal of this study is to explore the effects of different concentrations of high glucose for different exposure time on cell viability as well as intracellular reactive oxygen species (ROS) generation of primary cultured hippocampal neurons. Hippocampal neurons were exposed to different concentrations of high glucose (50, 75, 100, 125, and 150 mM) for 24, 48, 72 and 96 h. Cell viability and nuclear morphology were evaluated by MTT and Hoechst assays, respectively. Intracellular ROS were monitored using the fluorescent probe DCFH-DA. The results showed that, compared with control group, the cell viability of all high glucose-treated groups decreased significantly after 72 h and there also was a significant increase of apoptotic nuclei in high glucose-treated groups from 72 to 96 h. Furthermore, 50 mM glucose induced a peak rise in ROS generation at 24 h and the intracellular ROS levels of 50 mM glucose group were significantly higher than the corresponding control group from 6 to 72 h. These results suggest that hippocampal neurons could be injured by high glucose exposure and the neuronal injury induced by high glucose is potentially mediated through intracellular ROS accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cukierman T, Gerstein HC, Williamson JD (2005) Cognitive decline and dementia in diabetes–systematic overview of prospective observational studies. Diabetologia 48:2460–2469. doi:10.1007/s00125-005-0023-4

    Article  CAS  PubMed  Google Scholar 

  2. McCrimmon RJ, Ryan CM, Frier BM (2012) Diabetes and cognitive dysfunction. Lancet 379:2291–2299. doi:10.1016/S0140-6736(12)60360-2

    Article  PubMed  Google Scholar 

  3. Saczynski JS, Jonsdottir MK, Garcia ME et al (2008) Cognitive impairment: an increasingly important complication of type 2 diabetes: the age, gene/environment susceptibility–Reykjavik study. Am J Epidemiol 168:1132–1139. doi:10.1093/aje/kwn228

    Article  PubMed Central  PubMed  Google Scholar 

  4. Hou Y, Zhou L, Yang QD et al (2012) Changes in hippocampal synapses and learning-memory abilities in a streptozotocin-treated rat model and intervention by using fasudil hydrochloride. Neuroscience 200:120–129. doi:10.1016/j.neuroscience.2011.10.030

    Article  CAS  PubMed  Google Scholar 

  5. Liu K, Xie KN, Qiao ZM et al (2009) Impaired neural coordination in hippocampus of diabetic rat. Sheng Li Xue Bao 61:417–423

    PubMed  Google Scholar 

  6. Stranahan AM, Norman ED, Lee K et al (2008) Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 18:1085–1088. doi:10.1002/hipo.20470

    Article  PubMed Central  PubMed  Google Scholar 

  7. Stranahan AM, Arumugam TV, Cutler RG et al (2008) Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci 11:309–317. doi:10.1038/nn2055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Duarte JM, Carvalho RA, Cunha RA et al (2009) Caffeine consumption attenuates neurochemical modifications in the hippocampus of streptozotocin-induced diabetic rats. J Neurochem 111:368–379. doi:10.1111/j.1471-4159.2009.06349.x

    Article  CAS  PubMed  Google Scholar 

  9. Yi SS, Hwang IK, Kim DW et al (2011) The chronological characteristics of SOD1 activity and inflammatory response in the hippocampi of STZ-induced type 1 diabetic rats. Neurochem Res 36:117–128. doi:10.1007/s11064-010-0280-6

    Article  CAS  PubMed  Google Scholar 

  10. Pipatpiboon N, Pratchayasakul W, Chattipakorn N et al (2012) PPARgamma agonist improves neuronal insulin receptor function in hippocampus and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets. Endocrinology 153:329–338. doi:10.1210/en.2011-1502

    Article  CAS  PubMed  Google Scholar 

  11. Kaech S, Banker G (2007) Culturing hippocampal neurons. Nat Protoc 1:2406–2415

    Article  Google Scholar 

  12. Brewer GJ, Torricelli JR (2007) Isolation and culture of adult neurons and neurospheres. Nat Protoc 2:1490–1498. doi:10.1038/nprot.2007.207

    Article  CAS  PubMed  Google Scholar 

  13. Yaffe K, Blackwell T, Kanaya AM et al (2004) Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology 63:658–663

    Article  CAS  PubMed  Google Scholar 

  14. Eichenbaum H (1999) The hippocampus and mechanisms of declarative memory. Behav Brain Res 103:123–133

    Article  CAS  PubMed  Google Scholar 

  15. Wang SH, Sun ZL, Guo YJ et al (2009) Diabetes impairs hippocampal function via advanced glycation end product mediated new neuron generation in animals with diabetes-related depression. Toxicol Sci 111:72–79. doi:10.1093/toxsci/kfp126

    Article  CAS  PubMed  Google Scholar 

  16. Ye L, Wang F, Yang RH (2011) Diabetes impairs learning performance and affects the mitochondrial function of hippocampal pyramidal neurons. Brain Res 1411:57–64. doi:10.1016/j.brainres.2011.07.011

    Article  CAS  PubMed  Google Scholar 

  17. Gaspar JM, Castilho A, Baptista FI et al (2010) Long-term exposure to high glucose induces changes in the content and distribution of some exocytotic proteins in cultured hippocampal neurons. Neuroscience 171:981–992. doi:10.1016/j.neuroscience.2010.10.019

    Article  CAS  PubMed  Google Scholar 

  18. Santiago AR, Cristovao AJ, Santos PF et al (2007) High glucose induces caspase-independent cell death in retinal neural cells. Neurobiol Dis 25:464–472

    Article  CAS  PubMed  Google Scholar 

  19. Russell JW, Golovoy D, Vincent AM et al (2002) High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 16:1738–1748

    Article  CAS  PubMed  Google Scholar 

  20. Zhao CH, Liu HQ, Cao R et al (2012) Effects of dietary fish oil on learning function and apoptosis of hippocampal pyramidal neurons in streptozotocin-diabetic rats. Brain Res 1457:33–43. doi:10.1016/j.brainres.2012.03.067

    Article  CAS  PubMed  Google Scholar 

  21. Li ZG, Zhang W, Grunberger G et al (2002) Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res 946:221–231

    Article  CAS  PubMed  Google Scholar 

  22. Pop-Busui R, Sima A, Stevens M (2006) Diabetic neuropathy and oxidative stress. Diabetes Metab Res Rev 22:257–273

    Article  CAS  PubMed  Google Scholar 

  23. Rosen P, Nawroth PP, King G et al (2001) The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev 17:189–212

    Article  CAS  PubMed  Google Scholar 

  24. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820. doi:10.1038/414813a

    Article  CAS  PubMed  Google Scholar 

  25. Sedlic F, Sepac A, Pravdic D et al (2010) Mitochondrial depolarization underlies delay in permeability transition by preconditioning with isoflurane: roles of ROS and Ca2+. Am J Physiol Cell Physiol 299:C506–C515. doi:10.1152/ajpcell.0 0006.2010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–183. doi:10.1146/annurev.pharmtox.47.120505.105122

    Article  CAS  PubMed  Google Scholar 

  27. Ni Y, Gong XG, Lu M et al (2008) Mitochondrial ROS burst as an early sign in sarsasapogenin-induced apoptosis in HepG2 cells. Cell Biol Int 32:337–343. doi:10.1016/j.cellbi.2007.12.004

    Article  CAS  PubMed  Google Scholar 

  28. Yokoyama Y, Nohara K, Okubo T et al (2007) Generation of reactive oxygen species is an early event in dolichyl phosphate-induced apoptosis. J Cell Biochem 100:349–361. doi:10.1002/jcb.21024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Yuqin Liu and Bei Gu for their helpful technical assistance and scientific suggestions.

Conflicts of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengren Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Zhang, H., Gu, W. et al. Effects of exposure to high glucose on primary cultured hippocampal neurons: involvement of intracellular ROS accumulation. Neurol Sci 35, 831–837 (2014). https://doi.org/10.1007/s10072-013-1605-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-013-1605-4

Keywords

Navigation