Neurological Sciences

, Volume 35, Issue 2, pp 199–204 | Cite as

Postural control in restless legs syndrome with medication intervention using pramipexole

  • Aulikki Ahlgrén-Rimpiläinen
  • Hannu Lauerma
  • Seppo Kähkönen
  • Heikki Aalto
  • Katinka Tuisku
  • Matti Holi
  • Ilmari Pyykkö
  • Ilpo Rimpiläinen
Original Article


Central dopamine regulation is involved in postural control and in the pathophysiology of restless legs syndrome (RLS) and Parkinson’s disease (PD). Postural control abnormalities have been detected in PD, but there are no earlier studies with regard to RLS and postural control. Computerized force platform posturography was applied to measure the shift and the velocity (CPFV) of center point of forces (CPF) with eyes open (EO) and eyes closed (EC) in controls (n = 12) and prior and after a single day intervention with pramipexole in RLS subjects (n = 12). CPFV (EO) was significantly lower in the RLS group (p < 0.05) than in controls. After pramipexole intake, the difference disappeared and the subjective symptom severity diminished. Pramipexole did not significantly influence CPFV (EC) or CPF shift direction. Subjects with RLS used extensively visual mechanisms to control vestibule-spinal reflexes to improve or compensate the postural stability. Further research is needed to clarify altered feedback in the central nervous system and involvement of dopamine and vision in the postural control in RLS.


Restless legs syndrome Postural control Vision 


  1. 1.
    Allen RP, Picchietti D, Hening WA, Trenkwalder C, Walters AS, Montplaisir J (2003) Restless Legs Syndrome Diagnosis and Epidemiology workshop at the National Institutes of Health and International Restless Legs Syndrome Study Group, Restless legs syndrome: diagnostic criteria, special considerations, and epidemiology. A report from the restless legs syndrome diagnosis and epidemiology workshop at the National Institutes of Health. Sleep Med 4(2):101–119PubMedCrossRefGoogle Scholar
  2. 2.
    Connor JR, Wang X, Allem RP, Beard JL, Wiesinger JA, Felt BT, Earley C (2009) Altered dopaminergic profile in the putamen and substantia nigra in restless legs syndrome. Brain 132:2403–2412PubMedCrossRefGoogle Scholar
  3. 3.
    Cham R, Perera S, Studenski SA, Bohnen NI (2007) Striatal dopamine denervation and sensory integration for balance in middle-aged and older adults. Gait Posture 26(4):516–525PubMedCrossRefGoogle Scholar
  4. 4.
    Ondo WG, Vuon KD, Jankovic J (2002) Exploring the relationship between Parkinson disease and restless legs syndrome. Arch Neurol 59:421–424PubMedCrossRefGoogle Scholar
  5. 5.
    Rocchi L, Chiari L, Horak FB (2002) Effects of deep brain stimulation and levodopa on postural sway in Parkinson’s disease. J Neurol Neurosurg Psychiatry 73:267–274PubMedCrossRefGoogle Scholar
  6. 6.
    Frenklach A, Louie S, Koop MM, Bronte-Stewart H (2009) Excessive postural sway and the risk of falls at different stages of Parkinson’s disease. Mov Disord 24:377–385PubMedCrossRefGoogle Scholar
  7. 7.
    Bloem BR, Beckley DJ, van Dijk JG, Zwinderman AH, Remler MP, Roos RA (1996) Influence of dopaminergic medication on automatic postural responses and balance impairment in Parkinson’s disease. Mov Disord 11:509–521PubMedCrossRefGoogle Scholar
  8. 8.
    Chokroverty S, Jankovic J (1995) Restless legs syndrome: a disease in search of identity. Neurology 52:907–910CrossRefGoogle Scholar
  9. 9.
    Ohayon MM, O’Hara R, Vitiello MV (2012) Epidemiology of restless legs syndrome: a synthesis of the literature. Sleep Med Rev 16(4):283–295PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Montplaisir J, Fantini ML, Desaurels A, Michaud M, Petit D, Filipini D (2006) Long-term treatment with pramipexole in restless legs syndrome. Eur J Neurol 13(12):1306–1311PubMedCrossRefGoogle Scholar
  11. 11.
    Garcia-Borreguero D, Ferini-Strambi L, Kohnen R, O’Keeffe S, Trenkwalder C, Hogl B, Benes H, Jennum P, Partinen M, Fer D (2012) European guidelines on management of restless legs syndrome: report of a joint task force by the European Federation of Neurological Societies, the European Neurological Society and the European Sleep Research Society. Eur J Neurol 19(11):1385–1396PubMedCrossRefGoogle Scholar
  12. 12.
    Ahlgrén-Rimpiläinen A, Lauerma H, Kähkönen S, Aalto H, Pyykkö I, Palmgren K, Rimpiläinen I (2010) Effect of visual information on postural control of patients in schizophrenia. J Nerv Ment Dis 198(8):601–603PubMedCrossRefGoogle Scholar
  13. 13.
    Akpinar S (2009) In restless legs syndrome, the neural substrates of the sensorimotor symptoms are also normally involved in upright standing posture and biped walking. Med Hypotheses 3(2):169–176CrossRefGoogle Scholar
  14. 14.
    Paci D, Lanuzza B, Cosentino FII, Belfiore A, Papotto M, Cosilovo A, Iero I, Tripodi M, Ferri M (2009) Subclinical abnormal EMG activation of the gastrocnemii during gait analysis in restless legs syndrome: a preliminary report in 13 patients. Sleep Med 10:312–316PubMedCrossRefGoogle Scholar
  15. 15.
    Kingma H, Gauchard GC, de Waele C, van Nechel C, Bisdorff A, Yelnik A, Magnusson M, Perrin PP (2011) Stocktaking on the development of posturography for clinical use. J Vestib Res 21(3):117–125PubMedGoogle Scholar
  16. 16.
    Forsman P, Haeggstrom E, Wallin A, Toppila E, Pyykko I (2007) Daytime changes in postural stability and repeatability of posturographic measurements. J Occup Environ Med 49(6):591–596PubMedCrossRefGoogle Scholar
  17. 17.
    First MB, Spitzer RL, Gibbon M, Williams JBW (1997) User`s guide for the structured clinical interview for DSM-IV axis I disorders -clinicians version. American Psychiatric Press, WashingtonGoogle Scholar
  18. 18.
    Barnes TRE (1989) A rating scale for drug-induced akathisia. Br J Psychiatry 154:672–676PubMedCrossRefGoogle Scholar
  19. 19.
    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113PubMedCrossRefGoogle Scholar
  20. 20.
    Aalto H, Pyykko I, Starck J (1988) Computerized posturography, a development of a measuring system. Acta Otolaryngol 105:71–75CrossRefGoogle Scholar
  21. 21.
    Lê TT, Kapoula Z (2008) Role of ocular convergence in the Romberg quotient. Gait Posture 27(3):493–500PubMedCrossRefGoogle Scholar
  22. 22.
    Da Silva PJ, Nadal J, Infantosi AF (2012) Investigating the center of pressure velocity Romberg’s quotient for assessing the visual role on the body sway. Rev Bras Eng Biom 28(4):319–326Google Scholar
  23. 23.
    Qiu F, Cole MH, Davids KW, Hennig EM, Silburn PA, Netscher H, Kerr GK (2012) Enhanced somatosensory information decreases postural sway in older people. Gait Posture 35:630–635PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  • Aulikki Ahlgrén-Rimpiläinen
    • 1
  • Hannu Lauerma
    • 1
    • 2
  • Seppo Kähkönen
    • 3
  • Heikki Aalto
    • 4
  • Katinka Tuisku
    • 6
    • 9
  • Matti Holi
    • 6
  • Ilmari Pyykkö
    • 5
  • Ilpo Rimpiläinen
    • 7
    • 8
  1. 1.Forensic PsychiatryNational Institute for Health and WelfareHelsinkiFinland
  2. 2.Mental Hospital for PrisonersTurkuFinland
  3. 3.BioMag LaboratoryHelsinki University Central HospitalHelsinkiFinland
  4. 4.Department of Otorhinolaryngology & Head and Neck, Surgery, University of HelsinkiHelsinki University Central HospitalHelsinkiFinland
  5. 5.Department of OtorhinolaryngologyTampere University HospitalTampereFinland
  6. 6.Department of PsychiatryHelsinki University Central HospitalHelsinkiFinland
  7. 7.Department of Clinical NeurophysiologyHelsinki University Central HospitalHelsinkiFinland
  8. 8.Institute of Biomedical EngineeringTampere University of TechnologyTampereFinland
  9. 9.Finnish Institute of Occupational HealthHelsinkiFinland

Personalised recommendations