Neurological Sciences

, Volume 34, Issue 7, pp 1189–1195 | Cite as

A sequential impairment of cortical astrocytes and GABAergic neurons during ischemia is improved by mGluR1,5 activation

  • Zhan Liu
  • Wei Huo
  • Wei Sun
  • Manhua Lv
  • Fang Li
  • Zhiqiang Su
Original Article


Ischemic brain cell death is presumably caused by excitotoxicity. In addition to an increase of glutamate release during ischemia, the deficiency of astrocytic glutamate-reuptake may cause glutamate accumulation, which results in GABAergic neurons being vulnerable to ischemia. To confirm this hypothesis, we studied the pathophysiological changes of cortical astrocytes and GABAergic neurons during ischemia as well as the prevention of their injuries. Ischemia led to the sequential impairments of astrocytic glutamate-transporter currents and GABAergic neuronal excitability. The changes were partially reversed by 3,5-DHPG, an agonist of type-I/V metabotropic glutamate receptors (mGluR). Thus, mGluR1,5 activation may be useful against the sequential impairment of cortical astrocytes and GABAergic neurons in an early stage of ischemia.


Ischemia mGluR Astrocyte GABA neuron Glutamate transport and action potential 

Supplementary material

10072_2012_1220_MOESM1_ESM.doc (144 kb)
Supplementary material 1 (DOC 144 kb)


  1. 1.
    Block F (1999) Global ischemia and behavioural deficits. Prog Neurobiol 58:279–295PubMedCrossRefGoogle Scholar
  2. 2.
    Candelario-Jalil E (2009) Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics. Curr Opin Investig Drugs 10:644–654PubMedGoogle Scholar
  3. 3.
    Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11:465–469PubMedCrossRefGoogle Scholar
  4. 4.
    Metha SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54:34–66CrossRefGoogle Scholar
  5. 5.
    Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568PubMedGoogle Scholar
  6. 6.
    Schwartz-Bloom RD, Sah R (2001) r-aminobutyric acid A neurotransmission and cerebral ischemia. J Neurochem 77:353–371PubMedCrossRefGoogle Scholar
  7. 7.
    Taoufik E, Probert L (2008) Ischemic neuronal damage. Current Pharm Des 14:3565–3573CrossRefGoogle Scholar
  8. 8.
    Welsh JP, Yuen G, Placantonkis DG, Yu TQ, Haiss F, O’Heaen E, Molliver ME, Aicher SA (2002) Why do Purkinje cells die so easily after global brain ischemia? Aldolase C, EAAT4, and the cerebellar contribution to posthypoxic myoclonus. Adv Neurol 89:331–359PubMedGoogle Scholar
  9. 9.
    White BC, Sullivan JM, DeGracia DJ, O’Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS (2000) Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 179:1–33PubMedCrossRefGoogle Scholar
  10. 10.
    Won SJ, Kim DY, Gwag BJ (2002) Cellular and molecular pathways of ischemic neuronal death. J Biochem Mol Biol 35:67–86PubMedCrossRefGoogle Scholar
  11. 11.
    Albrecht J, Sonnewald U, Waagepetersen HS, Schousboe A (2007) Glutamine in the central nervous system: function and dysfunction. Front Biosci 12:332–343PubMedCrossRefGoogle Scholar
  12. 12.
    Sonnewald U, Qu H, Aschner M (2002) Pharmacology and toxicology of astrocyte-neuron glutamate transport and cycling. J Pharmacol Exp Ther 301:1–6PubMedCrossRefGoogle Scholar
  13. 13.
    Camacho A, Massieu L (2006) Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death. Arch Med Res 37:11–18PubMedCrossRefGoogle Scholar
  14. 14.
    Inage YW, Itoh M, Wada K, Takashima S (1998) Expression of two glutamate transporters, GLAST and EAAT4, in the human cerebellum: their correlation in development and neonatal hypoxia-ischemic damage. J Neuropathol Exp Neurol 57:554–562PubMedCrossRefGoogle Scholar
  15. 15.
    Swanson RA, Ying W, Kauppinen TM (2004) Astrocyte influences on ischemic neuronal death. Curr Mol Med 4:193–205PubMedCrossRefGoogle Scholar
  16. 16.
    Yamashita A, Makita K, Kuroiwa T, Tanaka K (2006) Glutamate transporters GLAST and EAAT4 regulate postischemic Purkinje cell death: an in vivo study using a cardiac arrest model in mice lacking GLAST or EAAT4. Neurosci Res 55:264–270PubMedCrossRefGoogle Scholar
  17. 17.
    Centonze D, Saulle E, Pisani A, Bernardi G, Calabresi P (2001) Adenosine-mediated inhibition of striatal GABAergic synaptic transmission during in vitro ischemia. Brain 124:1855–1865PubMedCrossRefGoogle Scholar
  18. 18.
    Chen X, Numata T, Li M, Mori Y, Orser BA, Jackson MF, Xiong ZG, MacDonald JF (2010) The modulation of TRPM7 currents by nafamostat mesilate depends directly upon extracellular concentrations of divalent cations. Mol Brain 3:38PubMedCrossRefGoogle Scholar
  19. 19.
    Johansen FF, Diemer NH (1991) Enhancement of GABA neurotransmission after cerebral ischemia in the rat reduces loss of hippocampal CA1 pyramidal cells. Acta Neurol Scand 84:1–6PubMedCrossRefGoogle Scholar
  20. 20.
    Muller GJ, Moller A, Johansen FF (2001) Stereological cell counts of GABAergic neurons in rat dentate hilus following transient cerebral ischemia. Exp Brain Res 141:380–388PubMedCrossRefGoogle Scholar
  21. 21.
    Saji M, Cohen M, Blau AD, Wessel TC, Volpe BT (1994) Transient forebrain ischemia induces delayed injury in the substantia nigra reticulata: degeneration of GABA neurons, compensatory expression of GAD mRNA. Brain Res 643:234–244PubMedCrossRefGoogle Scholar
  22. 22.
    Wang J-H (2003) Short-term cerebral ischemia causes the dysfunction of interneurons and more excitation of pyramidal neurons. Brain Res Bull 60:53–58PubMedCrossRefGoogle Scholar
  23. 23.
    Huang L, Chen N, Ge M, Zhu Y, Guan S, Wang JH (2010) Ca2+ and acidosis synergistically lead to the dysfunction of cortical GABAergic neurons during ischemia. Biochem Biophys Res Commun 394:709–714PubMedCrossRefGoogle Scholar
  24. 24.
    Klee CB, Means AR (2002) Keeping up with calcium: conference on calcium-binding proteins and calcium function in health and disease. EMBO Rep 3:823–827PubMedCrossRefGoogle Scholar
  25. 25.
    Mitani A, Yanase H, Namba S, Shudo M, Kataoka K (1995) In vitro ischemia-induced intracellular Ca2+ elevation in cerebellar slices: a comparative study with the values found in hippocampal slices. Acta Neuropathol (Berl.) 89:2–7CrossRefGoogle Scholar
  26. 26.
    Simon R, Xiong Z (2006) Acidotoxicity in brain ischemia. Biochem Soc Trans 34:1356–1361PubMedCrossRefGoogle Scholar
  27. 27.
    Chen N, Yu J, Qian H, Ge R, Wang JH (2010) Axons amplify somatic incomplete spikes into uniform amplitudes in mouse cortical pyramidal neurons. PLoS ONE 5(7):e11868PubMedCrossRefGoogle Scholar
  28. 28.
    Ge R, Qian H, Wang JH (2011) Physiological synaptic signals initiate sequential spikes at soma of cortical pyramidal neurons. Mol Brain 4:19PubMedCrossRefGoogle Scholar
  29. 29.
    Wang J-H, Kelly PT (2001) Ca2+/CaM signalling pathway up-regulates glutamatergic synaptic function in non-pyramidal fast-spiking neurons of hippocampal CA1. J Physiol (Lond.) 533:407–422CrossRefGoogle Scholar
  30. 30.
    Yu J, Qian H, Chen N, Wang JH (2011) Quantal glutamate release is essential for reliable neuronal encodings in cerebral networks. PLoS ONE 6:e25219PubMedCrossRefGoogle Scholar
  31. 31.
    Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470PubMedCrossRefGoogle Scholar
  32. 32.
    McKay BE, Turner RW (2005) Physiological and morphological development of the rat cerebellar Purkinje cell. J Physiol (Lond.) 567(Pt3):829–850CrossRefGoogle Scholar
  33. 33.
    Ni H et al (2010) Upregulation of barrel GABAergic neurons is associated with cross-modal plasticity in olfactory deficit. PLoS ONE 5:e13736PubMedCrossRefGoogle Scholar
  34. 34.
    Wang JH, Wei J, Chen X, Yu J, Chen N, Shi J (2008) The gain and fidelity of transmission patterns at cortical excitatory unitary synapses improve spike encoding. J Cell Sci 121:2951–2960PubMedCrossRefGoogle Scholar
  35. 35.
    Chen N, Chen X, Yu J, Wang J-H (2006) After-hyperpolarization improves spike programming through lowering threshold potentials and refractory periods mediated by voltage-gated sodium channels. Biochem Biophys Res Commun 346:938–945PubMedCrossRefGoogle Scholar
  36. 36.
    Chen N, Zhu Y, Gao X, Guan S, Wang J-H (2006) Sodium channel-mediated intrinsic mechanisms underlying the differences of spike programming among GABAergic neurons. Biochem Biophys Res Commun 346:281–287PubMedCrossRefGoogle Scholar
  37. 37.
    Chen N, Chen SL, Wu YL, Wang JH (2006) The refractory periods and threshold potentials of sequential spikes measured by whole-cell recordings. Biochem Biophys Res Commun 340:151–157PubMedCrossRefGoogle Scholar
  38. 38.
    Bergles DE, Jahr CE (1997) Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19:1297–1308PubMedCrossRefGoogle Scholar
  39. 39.
    Nagy JI, Dudek FE, Rash JE (2004) Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Brain Res Rev 47:191–215PubMedCrossRefGoogle Scholar
  40. 40.
    Zoli M, Agnati LF (1996) Wiring and volume transmission in the central nervous system: the concept of closed and open synapses. Prog Neurobiol 49:363–380PubMedGoogle Scholar
  41. 41.
    Bridges RJ, Esslinger CS (2005) The excitatory amino acid transporters: pharmacological insights on substrate and inhibitor specificity of the EAAT subtypes. Pharmacol Ther 107:271–285PubMedCrossRefGoogle Scholar
  42. 42.
    Shimamoto K, Lebrun B (1998) DL-threo-beta-benzyloxyaspartate, Apotent blocker of excitatory amino acid transporters. Mol Pharmacol 53:195–201PubMedGoogle Scholar
  43. 43.
    Chen N, Chen X, Wang J-H (2008) Homeostasis established by coordination of subcellular compartment plasticity improves spike encoding. J Cell Sci 121:2961–2971PubMedCrossRefGoogle Scholar
  44. 44.
    McNamara JO, Huang YZ, Leonard AS (2006) Molecular signaling mechanisms underlying epileptogenesis. Sci STKE 2006:re12PubMedCrossRefGoogle Scholar
  45. 45.
    Wisniewski K, Car H (2002) (S)-3,5-DHPG: a review. CNS Drug Rev 8:101–116PubMedCrossRefGoogle Scholar
  46. 46.
    Zhao S, Chen N, Yang Z, Huang L, Zhu Y, Guan S, Chen Q, Wang JH (2008) Ischemia deteriorates the spike encoding of rat cerebellar Purkinje cells by raising intracellular Ca2+. Biochem Biophys Res Commun 366:401–407PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Zhan Liu
    • 1
  • Wei Huo
    • 1
  • Wei Sun
    • 1
  • Manhua Lv
    • 1
  • Fang Li
    • 1
  • Zhiqiang Su
    • 1
  1. 1.Department of NeurologyThe First Affiliated Hospital in Harbin Medical UniversityHarbinPeople’s Republic of China

Personalised recommendations