Skip to main content
Log in

A sequential impairment of cortical astrocytes and GABAergic neurons during ischemia is improved by mGluR1,5 activation

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Ischemic brain cell death is presumably caused by excitotoxicity. In addition to an increase of glutamate release during ischemia, the deficiency of astrocytic glutamate-reuptake may cause glutamate accumulation, which results in GABAergic neurons being vulnerable to ischemia. To confirm this hypothesis, we studied the pathophysiological changes of cortical astrocytes and GABAergic neurons during ischemia as well as the prevention of their injuries. Ischemia led to the sequential impairments of astrocytic glutamate-transporter currents and GABAergic neuronal excitability. The changes were partially reversed by 3,5-DHPG, an agonist of type-I/V metabotropic glutamate receptors (mGluR). Thus, mGluR1,5 activation may be useful against the sequential impairment of cortical astrocytes and GABAergic neurons in an early stage of ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Block F (1999) Global ischemia and behavioural deficits. Prog Neurobiol 58:279–295

    Article  PubMed  CAS  Google Scholar 

  2. Candelario-Jalil E (2009) Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics. Curr Opin Investig Drugs 10:644–654

    PubMed  CAS  Google Scholar 

  3. Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11:465–469

    Article  PubMed  CAS  Google Scholar 

  4. Metha SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54:34–66

    Article  Google Scholar 

  5. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    PubMed  CAS  Google Scholar 

  6. Schwartz-Bloom RD, Sah R (2001) r-aminobutyric acid A neurotransmission and cerebral ischemia. J Neurochem 77:353–371

    Article  PubMed  CAS  Google Scholar 

  7. Taoufik E, Probert L (2008) Ischemic neuronal damage. Current Pharm Des 14:3565–3573

    Article  CAS  Google Scholar 

  8. Welsh JP, Yuen G, Placantonkis DG, Yu TQ, Haiss F, O’Heaen E, Molliver ME, Aicher SA (2002) Why do Purkinje cells die so easily after global brain ischemia? Aldolase C, EAAT4, and the cerebellar contribution to posthypoxic myoclonus. Adv Neurol 89:331–359

    PubMed  Google Scholar 

  9. White BC, Sullivan JM, DeGracia DJ, O’Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS (2000) Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 179:1–33

    Article  PubMed  CAS  Google Scholar 

  10. Won SJ, Kim DY, Gwag BJ (2002) Cellular and molecular pathways of ischemic neuronal death. J Biochem Mol Biol 35:67–86

    Article  PubMed  CAS  Google Scholar 

  11. Albrecht J, Sonnewald U, Waagepetersen HS, Schousboe A (2007) Glutamine in the central nervous system: function and dysfunction. Front Biosci 12:332–343

    Article  PubMed  CAS  Google Scholar 

  12. Sonnewald U, Qu H, Aschner M (2002) Pharmacology and toxicology of astrocyte-neuron glutamate transport and cycling. J Pharmacol Exp Ther 301:1–6

    Article  PubMed  CAS  Google Scholar 

  13. Camacho A, Massieu L (2006) Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death. Arch Med Res 37:11–18

    Article  PubMed  CAS  Google Scholar 

  14. Inage YW, Itoh M, Wada K, Takashima S (1998) Expression of two glutamate transporters, GLAST and EAAT4, in the human cerebellum: their correlation in development and neonatal hypoxia-ischemic damage. J Neuropathol Exp Neurol 57:554–562

    Article  PubMed  CAS  Google Scholar 

  15. Swanson RA, Ying W, Kauppinen TM (2004) Astrocyte influences on ischemic neuronal death. Curr Mol Med 4:193–205

    Article  PubMed  CAS  Google Scholar 

  16. Yamashita A, Makita K, Kuroiwa T, Tanaka K (2006) Glutamate transporters GLAST and EAAT4 regulate postischemic Purkinje cell death: an in vivo study using a cardiac arrest model in mice lacking GLAST or EAAT4. Neurosci Res 55:264–270

    Article  PubMed  CAS  Google Scholar 

  17. Centonze D, Saulle E, Pisani A, Bernardi G, Calabresi P (2001) Adenosine-mediated inhibition of striatal GABAergic synaptic transmission during in vitro ischemia. Brain 124:1855–1865

    Article  PubMed  CAS  Google Scholar 

  18. Chen X, Numata T, Li M, Mori Y, Orser BA, Jackson MF, Xiong ZG, MacDonald JF (2010) The modulation of TRPM7 currents by nafamostat mesilate depends directly upon extracellular concentrations of divalent cations. Mol Brain 3:38

    Article  PubMed  CAS  Google Scholar 

  19. Johansen FF, Diemer NH (1991) Enhancement of GABA neurotransmission after cerebral ischemia in the rat reduces loss of hippocampal CA1 pyramidal cells. Acta Neurol Scand 84:1–6

    Article  PubMed  CAS  Google Scholar 

  20. Muller GJ, Moller A, Johansen FF (2001) Stereological cell counts of GABAergic neurons in rat dentate hilus following transient cerebral ischemia. Exp Brain Res 141:380–388

    Article  PubMed  CAS  Google Scholar 

  21. Saji M, Cohen M, Blau AD, Wessel TC, Volpe BT (1994) Transient forebrain ischemia induces delayed injury in the substantia nigra reticulata: degeneration of GABA neurons, compensatory expression of GAD mRNA. Brain Res 643:234–244

    Article  PubMed  CAS  Google Scholar 

  22. Wang J-H (2003) Short-term cerebral ischemia causes the dysfunction of interneurons and more excitation of pyramidal neurons. Brain Res Bull 60:53–58

    Article  PubMed  Google Scholar 

  23. Huang L, Chen N, Ge M, Zhu Y, Guan S, Wang JH (2010) Ca2+ and acidosis synergistically lead to the dysfunction of cortical GABAergic neurons during ischemia. Biochem Biophys Res Commun 394:709–714

    Article  PubMed  CAS  Google Scholar 

  24. Klee CB, Means AR (2002) Keeping up with calcium: conference on calcium-binding proteins and calcium function in health and disease. EMBO Rep 3:823–827

    Article  PubMed  CAS  Google Scholar 

  25. Mitani A, Yanase H, Namba S, Shudo M, Kataoka K (1995) In vitro ischemia-induced intracellular Ca2+ elevation in cerebellar slices: a comparative study with the values found in hippocampal slices. Acta Neuropathol (Berl.) 89:2–7

    Article  CAS  Google Scholar 

  26. Simon R, Xiong Z (2006) Acidotoxicity in brain ischemia. Biochem Soc Trans 34:1356–1361

    Article  PubMed  CAS  Google Scholar 

  27. Chen N, Yu J, Qian H, Ge R, Wang JH (2010) Axons amplify somatic incomplete spikes into uniform amplitudes in mouse cortical pyramidal neurons. PLoS ONE 5(7):e11868

    Article  PubMed  Google Scholar 

  28. Ge R, Qian H, Wang JH (2011) Physiological synaptic signals initiate sequential spikes at soma of cortical pyramidal neurons. Mol Brain 4:19

    Article  PubMed  Google Scholar 

  29. Wang J-H, Kelly PT (2001) Ca2+/CaM signalling pathway up-regulates glutamatergic synaptic function in non-pyramidal fast-spiking neurons of hippocampal CA1. J Physiol (Lond.) 533:407–422

    Article  CAS  Google Scholar 

  30. Yu J, Qian H, Chen N, Wang JH (2011) Quantal glutamate release is essential for reliable neuronal encodings in cerebral networks. PLoS ONE 6:e25219

    Article  PubMed  CAS  Google Scholar 

  31. Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  PubMed  CAS  Google Scholar 

  32. McKay BE, Turner RW (2005) Physiological and morphological development of the rat cerebellar Purkinje cell. J Physiol (Lond.) 567(Pt3):829–850

    Article  CAS  Google Scholar 

  33. Ni H et al (2010) Upregulation of barrel GABAergic neurons is associated with cross-modal plasticity in olfactory deficit. PLoS ONE 5:e13736

    Article  PubMed  Google Scholar 

  34. Wang JH, Wei J, Chen X, Yu J, Chen N, Shi J (2008) The gain and fidelity of transmission patterns at cortical excitatory unitary synapses improve spike encoding. J Cell Sci 121:2951–2960

    Article  PubMed  CAS  Google Scholar 

  35. Chen N, Chen X, Yu J, Wang J-H (2006) After-hyperpolarization improves spike programming through lowering threshold potentials and refractory periods mediated by voltage-gated sodium channels. Biochem Biophys Res Commun 346:938–945

    Article  PubMed  CAS  Google Scholar 

  36. Chen N, Zhu Y, Gao X, Guan S, Wang J-H (2006) Sodium channel-mediated intrinsic mechanisms underlying the differences of spike programming among GABAergic neurons. Biochem Biophys Res Commun 346:281–287

    Article  PubMed  CAS  Google Scholar 

  37. Chen N, Chen SL, Wu YL, Wang JH (2006) The refractory periods and threshold potentials of sequential spikes measured by whole-cell recordings. Biochem Biophys Res Commun 340:151–157

    Article  PubMed  CAS  Google Scholar 

  38. Bergles DE, Jahr CE (1997) Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19:1297–1308

    Article  PubMed  CAS  Google Scholar 

  39. Nagy JI, Dudek FE, Rash JE (2004) Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Brain Res Rev 47:191–215

    Article  PubMed  CAS  Google Scholar 

  40. Zoli M, Agnati LF (1996) Wiring and volume transmission in the central nervous system: the concept of closed and open synapses. Prog Neurobiol 49:363–380

    PubMed  CAS  Google Scholar 

  41. Bridges RJ, Esslinger CS (2005) The excitatory amino acid transporters: pharmacological insights on substrate and inhibitor specificity of the EAAT subtypes. Pharmacol Ther 107:271–285

    Article  PubMed  CAS  Google Scholar 

  42. Shimamoto K, Lebrun B (1998) DL-threo-beta-benzyloxyaspartate, Apotent blocker of excitatory amino acid transporters. Mol Pharmacol 53:195–201

    PubMed  CAS  Google Scholar 

  43. Chen N, Chen X, Wang J-H (2008) Homeostasis established by coordination of subcellular compartment plasticity improves spike encoding. J Cell Sci 121:2961–2971

    Article  PubMed  CAS  Google Scholar 

  44. McNamara JO, Huang YZ, Leonard AS (2006) Molecular signaling mechanisms underlying epileptogenesis. Sci STKE 2006:re12

    Article  PubMed  Google Scholar 

  45. Wisniewski K, Car H (2002) (S)-3,5-DHPG: a review. CNS Drug Rev 8:101–116

    Article  PubMed  CAS  Google Scholar 

  46. Zhao S, Chen N, Yang Z, Huang L, Zhu Y, Guan S, Chen Q, Wang JH (2008) Ischemia deteriorates the spike encoding of rat cerebellar Purkinje cells by raising intracellular Ca2+. Biochem Biophys Res Commun 366:401–407

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 144 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Huo, W., Sun, W. et al. A sequential impairment of cortical astrocytes and GABAergic neurons during ischemia is improved by mGluR1,5 activation. Neurol Sci 34, 1189–1195 (2013). https://doi.org/10.1007/s10072-012-1220-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-012-1220-9

Keywords

Navigation