Analysis of emotionality and locomotion in radio-frequency electromagnetic radiation exposed rats

Abstract

In the current study the modulatory role of mobile phone radio-frequency electromagnetic radiation (RF-EMR) on emotionality and locomotion was evaluated in adolescent rats. Male albino Wistar rats (6–8 weeks old) were randomly assigned into the following groups having 12 animals in each group. Group I (Control): they remained in the home cage throughout the experimental period. Group II (Sham exposed): they were exposed to mobile phone in switch-off mode for 28 days, and Group III (RF-EMR exposed): they were exposed to RF-EMR (900 MHz) from an active GSM (Global system for mobile communications) mobile phone with a peak power density of 146.60 μW/cm2 for 28 days. On 29th day, the animals were tested for emotionality and locomotion. Elevated plus maze (EPM) test revealed that, percentage of entries into the open arm, percentage of time spent on the open arm and distance travelled on the open arm were significantly reduced in the RF-EMR exposed rats. Rearing frequency and grooming frequency were also decreased in the RF-EMR exposed rats. Defecation boli count during the EPM test was more with the RF-EMR group. No statistically significant difference was found in total distance travelled, total arm entries, percentage of closed arm entries and parallelism index in the RF-EMR exposed rats compared to controls. Results indicate that mobile phone radiation could affect the emotionality of rats without affecting the general locomotion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Hyland GJ (2000) Physics and biology of mobile telephony. Lancet 356:1833–1836

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Leszczynski D (2001) Mobile phones, precautionary principle, and future research. Lancet 358:1733

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Kwon MS, Hämäläinen H (2011) Effects of mobile phone electromagnetic fields: critical evaluation of behavioral and neurophysiological studies. Bioelectromagnetics 32(4):253–272

    PubMed  Article  Google Scholar 

  4. 4.

    Valentini E, Ferrara M, Presaghi F, De Gennaro L, Curcio G (2010) Systematic review and meta-analysis of psychomotor effects of mobile phone electromagnetic fields. Occup Environ Med 67(10):708–716

    PubMed  Article  Google Scholar 

  5. 5.

    Valentini E, Curcio G, Moroni F, Ferrara M, De Gennaro L, Bertini M (2007) Neurophysiological effects of mobile phone electromagnetic fields on humans: a comprehensive review. Bioelectromagnetics 28(6):415–432

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Arendash GW, Sanchez-Ramos J, Mori T, Mamcarz M, Lin X, Runfeldt M, Wang L, Zhang G, Sava V, Tan J, Cao C (2010) Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer’s disease mice. J Alzheimers Dis 19(1):191–210

    PubMed  Google Scholar 

  7. 7.

    Daniels WM, Pitout IL, Afullo TJ, Mabandla MV (2009) The effect of electromagnetic radiation in the mobile phone range on the behaviour of the rat. Metab Brain Dis 24(4):629–641

    PubMed  Article  Google Scholar 

  8. 8.

    Narayanan SN, Kumar RS, Potu BK, Nayak S, Mailankot M (2009) Spatial memory performance of Wistar rats exposed to mobile phone. Clinics (Sao Paulo) 64(3):231–234

    Article  Google Scholar 

  9. 9.

    Ntzouni MP, Stamatakis A, Stylianopoulou F, Margaritis LH (2011) Short-term memory in mice is affected by mobile phone radiation. Pathophysiology 18(3):193–199

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Bas O, Odaci E, Kaplan S, Acer N, Ucok K, Colakoglu S (2009) 900 MHz electromagnetic field exposure affects qualitative and quantitative features of hippocampal pyramidal cells in the adult female rat. Brain Res 1265:178–185

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Narayanan SN, Kumar RS, Potu BK, Nayak S, Bhat PG, Mailankot M (2010) Effect of radio-frequency electromagnetic radiations (RF-EMR) on passive avoidance behaviour and hippocampal morphology in Wistar rats. Ups J Med Sci 115(2):91–96

    PubMed  Article  Google Scholar 

  12. 12.

    Thomas S, Benke G, Dimitriadis C, Inyang I, Sim MR, Wolfe R, Croft RJ, Abramson MJ (2010) Use of mobile phones and changes in cognitive function in adolescents. Occup Environ Med 67(12):861–866

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Rodgers RJ, Dalvi A (1997) Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev 21(6):801–810

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Elliott BM, Faraday MM, Phillips JM, Grunberg NE (2004) Effects of nicotine on elevated plus maze and locomotor activity in male and female adolescent and adult rats. Pharmacol Biochem Behav 77(1):21–28

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Espejo EF (1997) Effects of weekly or daily exposure to the elevated plus-maze in male mice. Behav Brain Res 87(2):233–238

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Crawley JN (1981) Neuropharmacologic specificity of a simple animal model for the behavioral actions of benzodiazepines. Pharmacol Biochem Behav 15:695–699

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Bindra D, Thompson WR (1953) An evaluation of defecation and urination as measures of fearfulness. J Comp Physiol Psychol 46:43–45

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Cunha JM, Masur J (1978) Evaluation of psychotropic drugs with a modified open field test. Pharmacology 16(5):259–267

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Serafim AP, Felício LF (2001) Dopaminergic modulation of grooming behavior in virgin and pregnant rats. Braz J Med Biol Res 34:1465–1470

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Canteras NS, Resstel LB, Bertoglio LJ, Carobrez Ade P, Guimarães FS (2010) Neuroanatomy of anxiety. Curr Top Behav Neurosci 2:77–96

    PubMed  Article  Google Scholar 

  21. 21.

    Durant C, Christmas D, Nutt D (2010) The pharmacology of anxiety. Curr Top Behav Neurosci 2:303–330

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Davis M, Rainnie D, Cassell M (1994) Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci 17:208–214

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Sullivan RM (2004) Hemispheric asymmetry in stress processing in rat prefrontal cortex and the role of mesocortical dopamine. Stress 7(2):131–143

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Groenewegen HJ, Uylings HBM (2000) The prefrontal cortex and the integration of sensory, limbic and autonomic information. Prog Brain Res 126:3–28

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Noor NA, Mohammed HS, Ahmed NA, Radwan NM (2011) Variations in amino acid neurotransmitters in some brain areas of adult and young male albino rats due to exposure to mobile phone radiation. Eur Rev Med Pharmacol Sci 15(7):729–742

    PubMed  CAS  Google Scholar 

  26. 26.

    Ferreri F, Curcio G, Pasqualetti P, De Gennaro L, Fini R, Rossini PM (2006) Mobile phone emissions and human brain excitability. Ann Neurol 60(2):188–196

    PubMed  Article  Google Scholar 

  27. 27.

    Tahvanainen K, Niño J, Halonen P, Kuusela T, Alanko T, Laitinen T, Länsimies E, Hietanen M, Lindholm H (2007) Effects of cellular phone use on ear canal temperature measured by NTC thermistors. Clin Physiol Funct Imaging 27(3):162–172

    PubMed  Article  Google Scholar 

  28. 28.

    Dutta SK, Ghosh B, Blackman CF (1989) Radiofrequency radiation-induced calcium ion efflux enhancement from human and other neuroblastoma cells in culture. Bioelectromagnetics 10(2):197–202

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Meral I, Mert H, Mert N, Deger Y, Yoruk I, Yetkin A, Keskin S (2007) Effects of 900-MHz electromagnetic field emitted from cellular phone on brain oxidative stress and some vitamin levels of guinea pigs. Brain Res 1169:120–124

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Lai H, Singh NP (1995) Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells. Bioelectromagnetics 16(3):207–210

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Augner C, Hacker GW (2011) Associations between problematic mobile phone use and psychological parameters in young adults. Int J Public Health 57(2):437–441

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Indian Council of Medical Research (ICMR) for financially supporting this research project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sareesh Naduvil Narayanan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Narayanan, S.N., Kumar, R.S., Paval, J. et al. Analysis of emotionality and locomotion in radio-frequency electromagnetic radiation exposed rats. Neurol Sci 34, 1117–1124 (2013). https://doi.org/10.1007/s10072-012-1189-4

Download citation

Keywords

  • Mobile phone
  • Brain
  • Emotionality
  • Locomotion