Skip to main content

Advertisement

Log in

Rifampicin and Parkinson’s disease

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Rifampicin is a macrocyclic antibiotic used extensively for the treatment of Mycobacterium tuberculosis and other mycobacterial infections. Recently, it was discovered that rifampicin exhibits neuroprotective effects. It has been shown to protect PC12 cells against MPP+-induced apoptosis and inhibit the expression of α-synuclein multimers. In in vitro studies, rifampicin pretreatment protects PC12 cells against rotenone-induced cell death. Qualitative and quantitative analyses uncover that rifampicin significantly suppresses rotenone-induced apoptosis by ameliorating mitochondrial oxidative stress. It reduces microglial inflammation and improves neuron survival. Our results indicate that rifampicin is cytoprotective under a variety of experimental conditions, and suggest that it may be useful in PD therapeutics. It is the aim of this paper to review the experimental neuroprotection data reported using rifampicin with a focus on the molecular and cellular mechanisms of cytoprotective effect in in vitro models of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Langston JW (2002) Parkinson’s disease: current and future challenges. Neurotoxicology 23(4–5):443–450

    Article  PubMed  Google Scholar 

  2. Heisters D (2011) Parkinson’s: symptoms, treatments and research. Br J Nurs 20(9):548–554

    PubMed  Google Scholar 

  3. Eriksen JL, Wszolek Z, Petrucelli L (2005) Molecular pathogenesis of Parkinson disease. Arch Neurol 62(3):353–357

    Article  PubMed  Google Scholar 

  4. Babi T, Mahovi D (2008) Parkinson’s disease-challenges in new drug development. Coll Antropol 32(4):1275–1281

    Google Scholar 

  5. Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J (2011) Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol 26(Suppl 1):S1–S58

    Article  PubMed  Google Scholar 

  6. Olanow CW (2007) The pathogenesis of cell death in Parkinson’s disease-2007. Mov Disord 22(Suppl 17):S335–S342

    Article  PubMed  Google Scholar 

  7. Meissner WG, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P, Obeso JA, Rascol O, Schapira A, Voon V, Weiner DM, Tison F, Bezard E (2011) Priorities in Parkinson’s disease research. Nat Rev Drug Discov 10(5):377–393

    Article  PubMed  CAS  Google Scholar 

  8. Yulug B, Kilic U, Kilic E, Bähr M (2004) Rifampicin attenuates brain damage in focal ischemia. Brain Res 996(1):76–80

    Article  PubMed  CAS  Google Scholar 

  9. Namba Y, Kawatsu K, Izumi S, Ueki A, Ikeda K (1992) Neurofibrillary tangles and senile plaques in brain of elderly leprosy patients. Lancet 340(8825):978

    Article  PubMed  CAS  Google Scholar 

  10. Chui DH, Tabira T, Izumi S, Koya G, Ogata J (1994) Decreased beta-amyloid and increased abnormal tau deposition in the brain of aged patients with leprosy. Am J Pathol 145(4):771–775

    PubMed  CAS  Google Scholar 

  11. Tomiyama T, Kaneko H, Kataoka K, Asano S, Endo N (1997) Rifampicin inhibits the toxicity of pre-aggregated amyloid peptides by binding to peptide fibrils and preventing amyloid-cell interaction. Biochem J 322(Pt3):859–865

    PubMed  CAS  Google Scholar 

  12. Tomiyama T, Shoji A, Kataoka K, Suwa Y, Asano S, Kaneko H, Endo N (1996) Inhibition of amyloid beta protein aggregation and neurotoxicity by rifampicin. Its possible function as a hydroxyl radical scavenger. J Biol Chem 271(12):6839–6844

    Article  PubMed  CAS  Google Scholar 

  13. Tomiyama T, Asano S, Suwa Y, Morita T, Kataoka K, Mori H, Endo N (1994) Rifampicin prevents the aggregation and neurotoxicity of amyloid beta protein in vitro. Biochem Biophys Res Commun 204(1):76–83

    Article  PubMed  CAS  Google Scholar 

  14. Kapurniotu A (2004) Targeting alpha-synuclein in Parkinson’s disease. Chem Biol 11(11):1476–1478

    Article  PubMed  CAS  Google Scholar 

  15. Bradbury J (2005) New hope for mechanism-based treatment of Parkinson’s disease. Drug Discov Today 10(2):80–81

    Article  PubMed  Google Scholar 

  16. Kilic U, Kilic E, Lingor P, Yulug B, Bähr M (2004) Rifampicin inhibits neurodegeneration in the optic nerve transection model in vivo and after 1-methyl-4-phenylpyridinium intoxication in vitro. Acta Neuropathol 108(1):65–68

    Article  PubMed  CAS  Google Scholar 

  17. Oida Y, Kitaichi K, Nakayama H, Ito Y, Fujimoto Y, Shimazawa M, Nagai H, Hara H (2006) Rifampicin attenuates the MPTP-induced neurotoxicity in mouse brain. Brain Res. 1082(1):196–204

    Article  PubMed  CAS  Google Scholar 

  18. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272

    Article  PubMed  CAS  Google Scholar 

  19. Martin FL, Williamson SJ, Paleologou KE, Allsop D, El-Agnaf OM (2004) Alpha-synuclein and the pathogenesis of Parkinson’s disease. Protein Pept Lett 11:229–237

    Article  PubMed  CAS  Google Scholar 

  20. Bennett MC (2005) The role of alpha-synuclein in neurodegenerative diseases. Pharmacol Ther 105:311–331

    Article  PubMed  CAS  Google Scholar 

  21. Uversky VN, Eliezer D (2009) Biophysics of Parkinson’s disease: structure and aggregation of alpha-synuclein. Curr Protein Pept Sci 10(5):483–499

    Article  PubMed  CAS  Google Scholar 

  22. Xu J, Wei C, Xu C, Bennett MC, Zhang G, Li F, Tao E (2007) Rifampicin protects PC12 cells against MPP+-induced apoptosis and inhibits the expression of an α-synuclein multimer. Brain Res 1139:220–225

    Article  PubMed  CAS  Google Scholar 

  23. Lee SJ (2003) alpha-Synuclein aggregation: a link between mitochondrial defects and Parkinson’s disease? Antioxid Redox Signal 3:337–348

    Article  Google Scholar 

  24. Ono K, Hirohata M, Yamada M (2008) Alpha-synuclein assembly as a therapeutic target of Parkinson’s disease and related disorders. Curr Pharm Des 14(30):3247–3266

    Article  PubMed  CAS  Google Scholar 

  25. Li J, Zhu M, Rajamani S, Uversky VN, Fink AL (2004) Rifampicin inhibits alpha-synuclein fibrillation and disaggregates fibrils. Chem Biol 11:1513–1521

    Article  PubMed  CAS  Google Scholar 

  26. Greenamyre JT, Betarbet R, Sherer TB (2003) The rotenone model of Parkinson’s disease: genes, environment and mitochondria. Parkinsonism Relat Disord 9(Suppl 2):S59–S64

    Article  PubMed  Google Scholar 

  27. Testa CM, Sherer TB, Greenamyre JT (2005) Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res Mol Brain Res 134(1):220–225

    Article  Google Scholar 

  28. Watanabe Y, Himeda T, Araki T (2005) Mechanisms of MPTP toxicity and their implications for therapy of Parkinson’s disease. Med Sci Monit 11:RA17–RA23

    PubMed  CAS  Google Scholar 

  29. Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT (2002) An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 22:7006–7015

    PubMed  CAS  Google Scholar 

  30. Starkov AA (2008) The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 1147:37–52

    Article  PubMed  CAS  Google Scholar 

  31. Tretter L, Sipos I, Adam-Vizi V (2004) Initiation of neuronal damage by complex I deficiency and oxidative stress in Parkinson’s disease. Neurochem Res 29(3):569–577

    Article  PubMed  CAS  Google Scholar 

  32. Zhu J, Chu CT (2010) Mitochondrial dysfunction in Parkinson’s disease. J Alzheimers Dis 20(Suppl 2):S325–S334

    PubMed  CAS  Google Scholar 

  33. Tobón-Velasco JC, Carmona-Aparicio L, Ali SF, Santamaría A (2010) Biomarkers of cell damage induced by oxidative stress in Parkinson’s disease and related models. Cent Nerv Syst Agents Med Chem 10(4):278–286

    Article  PubMed  Google Scholar 

  34. Fariss MW, Chan CB, Patel M, Van Houten B, Orrenius S (2005) Role of mitochondria in toxic oxidative stress. Mol Interv 5(2):94–111

    Article  PubMed  CAS  Google Scholar 

  35. Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 31(2):119–130

    Article  PubMed  CAS  Google Scholar 

  36. Adams JD Jr, Chang ML, Klaidman L (2001) Parkinson’s disease—redox mechanisms. Curr Med Chem 8(7):809–814

    Article  PubMed  CAS  Google Scholar 

  37. Böttcher T, Gerber J, Wellmer A, Smirnov AV, Fakhrjanali F, Mix E, Pilz J, Zettl UK, Nau R (2000) Rifampin reduces production of reactive oxygen species of cerebrospinal fluid phagocytes and hippocampal neuronal apoptosis in experimental Streptococcus pneumoniae meningitis. J Infect Dis 181(6):2095–2098

    Article  PubMed  Google Scholar 

  38. Chen S, Sun Y, Zeng Z, Tao E (2010) Rifampicin inhibits apoptosis in rotenone-induced differentiated PC12 cells by ameliorating mitochondrial oxidative stress. Neural Regen Res 5(4):251–256

    CAS  Google Scholar 

  39. Qian L, Flood PM, Hong JS (2010) Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J Neural Transm 117(8):971–979

    Article  PubMed  CAS  Google Scholar 

  40. Lu L, Li F, Wang X (2010) Novel anti-inflammatory and neuroprotective agents for Parkinson’s disease. CNS Neurol Disord Drug Targets 9(2):232–240

    Article  PubMed  CAS  Google Scholar 

  41. Meda L, Cassatella MA, Szendrei GI, Otvos L Jr, Baron P, Villalba M (1995) Activation of microglial cells by β-amyloid protein and interferon-γ. Nature 373:647–650

    Article  Google Scholar 

  42. Zielasek J, Hartung HP (1996) Molecular mechanisms of microglial activation. Adv Neuroimmunol 6:191–202

    Article  PubMed  CAS  Google Scholar 

  43. Bi W, Zhu L, Wang C, Liang Y, Liu J, Shi Q, Tao E (2011) Rifampicin inhibits microglial inflammation and improves neuron survival against inflammation. Brain Res 1395:12–20

    Article  PubMed  CAS  Google Scholar 

  44. Bellahsène A, Forsgren A (1980) Effect of rifampin on the immune response in mice. Infect Immun 27:15–20

    PubMed  Google Scholar 

  45. Tsiskarishvili NV, Tsiskarishvili NI (2009) The anti-tubercular drugs in the treatment of psoriasis. Georgian Med News 174:25–28

    PubMed  Google Scholar 

  46. Hamid Namazi MD (2008) Practice pearl: a novel use of rifampicin for treatment of carpal tunnel syndrome. J Pain 9:380–381

    Article  PubMed  Google Scholar 

  47. Calleja C, Pascussi JM, Mani JC, Maurel P, Vilarem MJ (1998) The antibiotic rifampicin is a nonsteroidal ligand and activator of the human glucocorticoid receptor. Nat Med 4:92–96

    Article  PubMed  CAS  Google Scholar 

  48. Kim SK, Kim YM, Yeum CE, Jin SH, Chae GT, Lee SB (2009) Rifampicin Inhibits the LPS-induced Expression of Toll-like Receptor 2 via the Suppression of NF-kappaB DNA-binding Activity in RAW 264.7 Cells. Korean J Physiol Pharmacol 13:475–482

    Article  PubMed  CAS  Google Scholar 

  49. Dutta G, Zhang P, Liu B (2008) The lipopolysaccharide Parkinson’s disease animal model: mechanistic studies and drug discovery. Fundam Clin Pharmacol 22(5):453–464

    Article  PubMed  CAS  Google Scholar 

  50. Liu B (2006) Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson’s disease. AAPS J 8(3):E606–E621

    Article  PubMed  Google Scholar 

  51. Qian L, Flood PM, Hong JS (2010) Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J Neural Transm 117:971–979

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Guangdong Provincial Department of Science and Technology (0400935505B33801003) and the Ph.D. Programs Foundation of Ministry of Education of China (No. 20070558257).

Conflict of interest

This paper is free of conflicts of interest. We declare that we have no financial or personal relationships with other people or organizations that could inappropriately bias our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enxiang Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, W., Zhu, L., Jing, X. et al. Rifampicin and Parkinson’s disease. Neurol Sci 34, 137–141 (2013). https://doi.org/10.1007/s10072-012-1156-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-012-1156-0

Keywords

Navigation