Skip to main content
Log in

Neonatal hypoxic insult-mediated cholinergic disturbances in the brain stem: effect of glucose, oxygen and epinephrine resuscitation

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Molecular processes regulating cholinergic functions play an important role in the control of respiration under neonatal hypoxia. The present study evaluates neonatal hypoxic insult-mediated cholinergic alterations and the protective role of glucose, oxygen and epinephrine resuscitation. The changes in total muscarinic, muscarinic M1, M2, M3 receptors and the enzymes involved in acetylcholine metabolism––cholineacetyl transferase and acetylcholine easterase in the brain stem were analyzed. Hypoxic stress decreased total muscarinic receptors along with a reduction in muscarinic M1, M2 and M3 receptor genes in the brain stem. The reduction in acetylcholine metabolism is indicated by the down regulated cholineacetyl transferase and up regulated acetylcholine easterase expression. These cholinergic disturbances in the brain stem were reversed by glucose resuscitation to hypoxic neonates. The adverse effects of immediate oxygenation and epinephrine administration were also reported. This has immense clinical significance in establishing a proper resuscitation for the management of neonatal hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alkondon M, Albuquerque EX (2006) Subtype-specific inhibition of nicotinic acetylcholine receptors by choline: A regulatory pathway. J Pharmacol Exp Therap 318:268–275

    Article  CAS  Google Scholar 

  2. Ballantyne D, Scheid P (2000) Mammalian brainstem chemosensitive neurones: linking them to respiration in vitro. J Physiol 525(3):567–577

    Article  PubMed  CAS  Google Scholar 

  3. Beley A, Bertrand N, Beley P (1991) Cerebral ischemia: changes in brain choline, acetylcholine, and other monoamines as related to energy metabolism. Neurochem Res 16:555–561

    Article  PubMed  CAS  Google Scholar 

  4. Bellingham MC, Berger AJ (1996) Presynaptic depression of excitatory synaptic inputs to rat hypoglossal motoneurons by muscarinic M2 receptors. J Neurophysiol 76(6):3758–3770

    PubMed  CAS  Google Scholar 

  5. Bellingham MC, Ireland MF (2002) Contribution of cholinergic systems to state-dependent modulation of respiratory control. Respir Physiol Neurobiol 131(1–2):135–144

    Article  PubMed  CAS  Google Scholar 

  6. Berg AT (1988) Childhood neurological morbidity and its association with gestational age, intrauterine growth retardation and perinatal stress. Paediatr Perinat Epidemiol 2:229–238

    Article  PubMed  CAS  Google Scholar 

  7. Boudinot E, Champagnat J, Foutz AS (2008) M1/M3 and M2/M4 muscarinic receptor double–knockout mice present distinct respiratory phenotypes. Respir Physiol Neurobiol 161:54–61

    Article  PubMed  CAS  Google Scholar 

  8. Burton MD, Kazemi H (2000) Neurotransmitters in central respiratory control. Respir Physiol 122(2–3):111–121

    Article  PubMed  CAS  Google Scholar 

  9. Burton MD, Nouri K, Baichoo S, Samuels–Toyloy N, Kazemi H (1994) Ventilatory output and acetylcholine: perturbations in release and muscarinic receptor activation. J Appl Physiol 77:2275–2284

    PubMed  CAS  Google Scholar 

  10. Carroll JL (2003) Developmental plasticity in respiratory control. J Appl Physiol 94(1):375–389

    Article  PubMed  CAS  Google Scholar 

  11. Casolini P, Zuena AR, Cinque C, Matteucci P, Alemà GS, Adriani W, Carpinelli G, Santoro F, Alleva E, Bosco P, Nicoletti F, Laviola G, Catalani A (2005) Sub-neurotoxic neonatal anoxia induces subtle behavioural changes and specific abnormalities in brain group-I metabotropic glutamate receptors in rats. J Neurochem 95(1):137–145

    Article  PubMed  CAS  Google Scholar 

  12. Chang HM, Wei IH, Tseng CY, Lue JH, Wen CY, Shieh JY (2004) Differential expression of calcitonin gene-related peptide (CGRP) and choline acetyltransferase (ChAT) in the axotomized motoneurons of normoxic and hypoxic rats. Chem Neuroanat 28(4):239–251

    Article  CAS  Google Scholar 

  13. Conrad SC, Nichols NL, Ritucci NA, Dean JB, Putnam RW (2009) Development of chemosensitivity in neurons from the nucleus tractus solitarii (NTS) of neonatal rats. Respir Physiol Neurobiol 166(1):4–12

    Article  PubMed  CAS  Google Scholar 

  14. Cooper JR, Bloom FE, Roth RH (2003) Acetylcholine. The Biochemical Basis of Neuropharmacology Oxford University Press, New York

    Google Scholar 

  15. Darnall RA, Ariagno RL, Kinney HC (2006) The late preterm infant and the control of breathing, sleep, and brainstem development: a review. Clin Perinatol 33(4):883–914

    Article  PubMed  Google Scholar 

  16. du Plessis AJ, Volpe JJ (2002) Perinatal brain injury in the preterm and term newborn. Curr Opin Neurol 15:151–157

    Article  PubMed  Google Scholar 

  17. Dutschmann M, Herbert H (1999) Pontine cholinergic mechanisms enhance trigeminally evoked respiratory suppression in the anesthetized rat. J Appl Physiol 87(3):1059–1065

    PubMed  CAS  Google Scholar 

  18. Ellman GL, Courtney KD, Andres V Jr, Father-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  19. Flavin MP, Yang Y, Ho G (1993) Hypoxic forebrain cholinergic neuron injury: role of glucose excitatory amino acid receptors and nitric oxide. Neurosci Lett 164:5–8

    Article  PubMed  CAS  Google Scholar 

  20. Freeman GB, Mykytyn V, Gibson GE (1987) Differential alteration of dopamine, acetylcholine and glutamate release during anoxia and/or 3,4- diaminopyridine treatment. Neurochem Res 12:1019–1027

    Article  PubMed  CAS  Google Scholar 

  21. Furchgott RF, Sleator W Jr, De GUbareff T (1960) Effects of acetylcholine and epinephrine on the contractile strength and action potential of electrically driven guinea pig atria. J Pharmacol Exp Ther 129:405–416

    PubMed  CAS  Google Scholar 

  22. Gibbs RB (1999) Oestrogen replacement enhances acquisition of a spatial memory task and reduces deficits associated with hippocampal muscarinic receptor inhibition. Horm Behav 36:222–233

    Article  PubMed  CAS  Google Scholar 

  23. Gibson GE, Duffy TE (1981) Impaired Synthesis of Acetylcholine by Mild Hypoxic Hypoxia or Nitrous Oxide. J Neurochem 36(1):28–33

    Article  PubMed  CAS  Google Scholar 

  24. Gibson GE, Peterson C (1981) Decrease in acetylcholine release in vitro with low oxygen. Biochem Pharmacol 31:111–115

    Article  Google Scholar 

  25. Gireesh G, Kaimal SB, Kumar TP, Paulose CS (2008) Decreased muscarinic M1 receptor gene expression in the hypothalamus, brainstem, and pancreatic islets of streptozotocin-induced diabetic rats. J Neurosci Res 86(4):947–953

    Article  PubMed  CAS  Google Scholar 

  26. Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain: the disposition of [3H] Norepinephrine, [3H] DOPA in various regions of the brain. J Neurochem 13:655–669

    Article  PubMed  CAS  Google Scholar 

  27. Haji A, Takeda R, Okazaki M (2000) Neuropharmacology of control of respiratory rhythm and pattern in mature mammals. Pharmacol Ther 86:277–304

    Article  PubMed  CAS  Google Scholar 

  28. Kim MH, Kim MO, Heo JS, Kim JS, Han HJ (2008) Acetylcholine inhibits long-term hypoxia-induced apoptosis by suppressing the oxidative stress-mediated MAPKs activation as well as regulation of Bcl-2, c-IAPs, and caspase-3 in mouse embryonic stem cells. Apoptosis 13(2):295–304

    Article  PubMed  Google Scholar 

  29. Kouniniotou-Krontiri P, Tsakiris S (1989) Time dependence of Li + action on acetylcholinesterase activity in correlation with spontaneous quantal release of acetylcholine in rat diaphragm. Jpn J Physiol 39:429–440

    Article  PubMed  CAS  Google Scholar 

  30. Lai J, Shao XM, Pan RW, Dy E, Huang CH, Feldman JL (2001) RT-PCR reveals muscarinic acetylcholine receptor mRNA in the pre-Botzinger complex. Am J Physiol Lung Cell Mol Physiol 281:L1420–L1424

    PubMed  CAS  Google Scholar 

  31. Lindahl E, Michelsson K, Helenius M, Parre M (1988) Neonatal risk factors and later neurodevelopmental disturbances. Dev Med Child Neurol 30:571–589

    Article  PubMed  CAS  Google Scholar 

  32. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  33. Muthuraju S, Maiti P, Solanki P, Sharma AK, Pati S, Singh SB, Prasad D, Ilavazhagan G (2011) Possible role of cholinesterase inhibitors on memory consolidation following hypobaric hypoxia of rats. Int J Neurosci 121:279–288

    Article  PubMed  CAS  Google Scholar 

  34. Nattie EE, Li A (1990) Ventral medulla sites of muscarinic receptor subtypes involved in cardiorespiratory control. J Appl Physiol 69:33–41

    PubMed  CAS  Google Scholar 

  35. Nyakas C, Buwalda B, Luiten PG (1996) Hypoxia and brain development. Prog Neurobiol 49:1–51

    PubMed  CAS  Google Scholar 

  36. Paulose CS, Chathu F, Khan SR, Krishnakumar A (2008) Neuroprotective role of Bacopa monnieri extract in epilepsy and effect of glucose supplementation during hypoxia: glutamate receptor gene expression. Neurochem Res 33(9):1663–1671

    Article  PubMed  CAS  Google Scholar 

  37. Peterson BS (2003) Brain imaging studies of the anatomical and functional consequences of preterm birth for human brain development. Ann NY Acad Sci. 1008:219–237

    Article  PubMed  Google Scholar 

  38. Renuka TR, Ani DV, Paulose CS (2004) Alterations in the muscarinic M1 and M3 receptor gene expression in the brain stem during pancreatic regeneration and insulin secretion in weanling rats. Life Sci 75(19):2269–2280

    Article  PubMed  CAS  Google Scholar 

  39. Rodrigo J, Fernandez AP, Serrano J, Peinado MA, Martinez A (2005) The role of free radicals in cerebral hypoxia and ischemia. Free Radic Biol Med 39:26–50

    Article  PubMed  CAS  Google Scholar 

  40. Rowland NE, Farnbauch LJ, Robertson KL (2003) Brain muscarinic receptor subtypes mediating water intake and Fos following cerebroventricular administration of bethanecol in rats. Psychopharmacology 167:174–179

    PubMed  CAS  Google Scholar 

  41. Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann N Y Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  42. Schubert S, Brandl U, Brodhun M (2005) Neuroprotective effects hypoxia—ischemia in newborn piglets. Brain Res 1058:129–136

    Article  PubMed  CAS  Google Scholar 

  43. Shao XM, Feldman JL (2000) Acetylcholine modulates respiratory pattern: effects mediated by M3-like receptors in pre-Bötzinger complex inspiratory neurons. J Neurophysiol 83:1243–1252

    PubMed  CAS  Google Scholar 

  44. Shah P, Riphagen S, Beyene J, Perlman JM (2004) Multiorgan dysfunction in infants with post-asphyxial hypoxic—ischemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 89:F152–F155

    Article  PubMed  CAS  Google Scholar 

  45. Soulier V, Peyronnet J, Pequignot JM, Cottet–Emard JM, Lagercrantz H, Dalmaz Y (1997) Long–term impairment in the neurochemical activity of the sympathoadrenal system after neonatal hypoxia in the rat. Pediatr Res 42:30–38

    Article  PubMed  CAS  Google Scholar 

  46. Tanaka H, Takahashi S, Miyamoto A, Oki J, Cho K, Okuno A (1995) Effects of neonatal hypoxia on brainstem cholinergic neurons-pedunculopontine nucleus and laterodorsal tegmental nucleus. Brain Dev 17:264–270

    Article  PubMed  CAS  Google Scholar 

  47. Unsworth BR, Fleming LH, Caron PC (1980) Neurotransmitter enzymes in telencephalon, brain stem and cerebellum during the entire life span of the mouse. Mech Ageing Dev 13:205–217

    Article  PubMed  CAS  Google Scholar 

  48. Vento M, Sastre J, Asensi MA, Vina J (2005) Room-air resusciatation causes less damage to heart and kidney than 100% oxygen. Am J Respir Crit Care Med 172:1393–1398

    Article  PubMed  Google Scholar 

  49. Weihua X, Judith AS, Arnaud C, Philip JW, Angie R, Rodney DM, Palmer T, Steven HH, Oksana L (2000) Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholineesterase. Pharmacology 293:896–902

    Google Scholar 

  50. Willoughby J, Harvey SAK, John BC (1986) Compartmentation and regulation of acetyIcholine synthesis at the Synapse. Biochem J 235:215–223

    PubMed  CAS  Google Scholar 

  51. Yamamura HI, Synder G (1981) Binding of [3H] QNB in rat brain. Proc Natl Acad Sci 71:1725–1729

    Article  Google Scholar 

  52. Zapata A, Capdevila JL, Trullas R (1998) Region-specific and calciumdependent increase in dialysate choline levels by NMDA. J Neurosci 18:3597–3605

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the research grants from DBT, DST, ICMR, Govt. of India and KSCSTE, Government of Kerala to Dr. C. S. Paulose. Anju T R thanks Council of Scientific and Industrial Research for Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Paulose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anju, T.R., Naijil, G., Shilpa, J. et al. Neonatal hypoxic insult-mediated cholinergic disturbances in the brain stem: effect of glucose, oxygen and epinephrine resuscitation. Neurol Sci 34, 287–296 (2013). https://doi.org/10.1007/s10072-012-0989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-012-0989-x

Keywords

Navigation