Skip to main content

Advertisement

Log in

Cytoskeletal proteins in the cerebrospinal fluid as biomarker of multiple sclerosis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The axonal cytoskeleton is a finely organized system, essential for maintaining the integrity of the axon. Axonal degeneration is implicated in the pathogenesis of unremitting disability of multiple sclerosis (MS). Purpose of this study is to evaluate levels of cytoskeletal proteins such as neurofilament light protein (NFL), glial fibrillary acidic protein (GFAP), and β-tubulin (β-Tub) isoforms II and III in the cerebrospinal fluid (CSF) of MS patients and their correlation with MS clinical indices. CSF levels of cytoskeletal proteins were determined in 51 patients: 33 with MS and 18 with other neurological diseases (OND). NFL, GFAP and β-Tub II proteins were significantly higher (p < 0.0001) in MS than in OND group; no significant difference (p > 0.05) was found between MS and OND with regard to β-Tub III. Interestingly, levels of β-Tub III and NFL were higher in progressive than in remitting MS forms; on the contrary, higher levels of β-Tub II and GFAP were found in remitting MS forms. However, with the exception of β-Tub III, all proteins tend to decrease their CSF levels concomitantly with the increasing disability (EDSS) score. Overall, our results might indicate β-Tub II as a potential candidate for diagnostic and β-Tub III as a possible prognostic biomarker of MS. Therefore, further analyses are legitimated and desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Noseworthy JH, Lucchinetti C, Rodriguez M et al (2000) Multiple sclerosis. N Engl J Med 343:938–952

    Article  PubMed  CAS  Google Scholar 

  2. Alonso A, Hernán MA (2008) Temporal trends in the incidence of multiple sclerosis: a systematic review. Neurology 71:129–135

    Article  PubMed  Google Scholar 

  3. Hirtz D, Thurman DJ, Gwinn-Hardy K et al (2007) How common are the “common” neurologic disorders? Neurology 68:326–337

    Article  PubMed  CAS  Google Scholar 

  4. Orton SM, Herrera BN, Yee IM et al (2006) Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol 5:932–936

    Article  PubMed  Google Scholar 

  5. Greer JM, McCombe PA (2011) Role of gender in multiple sclerosis: clinical effects and potential molecular mechanisms. J Neuroimmunol 234:7–18

    Article  PubMed  CAS  Google Scholar 

  6. Dyment DA, Ebers GC, Sadovnick AD (2004) Genetics of multiple sclerosis. Lancet Neurol 3(2):104–110

    Article  PubMed  CAS  Google Scholar 

  7. Ebers GC (2008) Environmental factors and multiple sclerosis. Lancet Neurol 7(3):268–277

    Article  PubMed  Google Scholar 

  8. Sotgiu S, Pugliatti M, Sanna A et al (2002) Multiple sclerosis complexity in selected populations: the challenge of Sardinia, insular Italy. Eur J Neurol 9:329–341

    Article  PubMed  CAS  Google Scholar 

  9. Pugliatti M, Rosati G, Carton H et al (2006) The epidemiology of multiple sclerosis in Europe. Eur J Neurol 13:700–722

    Article  PubMed  CAS  Google Scholar 

  10. Budde MD, Kim JH, Liang HF et al (2008) Axonal injury detected by in vivo diffusion tensor imaging correlates with neurological disability in a mouse model of multiple sclerosis. NMR Biomed 21:589–597

    Article  PubMed  Google Scholar 

  11. Bitsch A, Schuchardt J, Bunkowski S et al (2000) Acute axonal injury in multiple sclerosis: correlation with demyelination and inflammation. Brain 123:1174–1183

    Article  PubMed  Google Scholar 

  12. Rammohan KW (2003) Axonal injury in multiple sclerosis. Curr Neurol Neurosci Rep 3(3):231–237

    Article  PubMed  Google Scholar 

  13. Teunissen CE, Dijkstra PC, Polman C (2005) Biological markers in CSF and blood for axonal degeneration in multiple sclerosis. Lancet Neurol 4:32–41

    Article  PubMed  Google Scholar 

  14. Zaffaroni M (2003) Biological indicators of the neurodegenerative phase of multiple sclerosis. J Neurol Sci 24(Suppl 5):S279–S282

    Google Scholar 

  15. Lycke JN, Karlsson JE, Andersen O, Rosengren LE (1998) Neurofilament protein in cerebrospinal fluid: a potential marker of activity in multiple sclerosis. J Neurol Neurosurg Psychiatry 64(3):402–404

    Article  PubMed  CAS  Google Scholar 

  16. Haghighi S, Andersen O, Odén A, Rosengren L (2004) Cerebrospinal fluid markers in MS patients and their healthy siblings. Acta Neurol Scand 109(2):97–99

    Article  PubMed  CAS  Google Scholar 

  17. Malmeström C, Haghighi S, Rosengren L et al (2003) Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 61(12):1720–1725

    Article  PubMed  Google Scholar 

  18. Norgren N, Rosengren L, Stigbrand T (2003) Elevated neurofilament levels in neurological diseases. Brain Res 987(1):25–31

    Article  PubMed  CAS  Google Scholar 

  19. Semra YK, Seidi OA, Sharief MK (2002) Heightened intrathecal release of axonal cytoskeletal proteins in multiple sclerosis is associated with progressive disease and clinical disability. J Neuroimmunol 122(1–2):132–139

    Article  PubMed  CAS  Google Scholar 

  20. Rosengren LE, Lycke J, Andersen O (1995) Glial fibrillary acidic protein in CSF of multiple sclerosis patients: relation to neurological deficit. J Neurol Sci 133(1–2):61–65

    Article  PubMed  CAS  Google Scholar 

  21. Petzold A, Eikelenboom MJ, Gveric D et al (2002) Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations. Brain 125(Pt 7):1462–1473

    Article  PubMed  CAS  Google Scholar 

  22. Luduena RF (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178:207–275

    Article  PubMed  CAS  Google Scholar 

  23. Sullivan KF, Cleveland DW (1986) Identification of conserved isotype defining variable region sequences for four vertebrate β-tubulin polypeptide classes. Proc Natl Acad Sci USA 83:4327–4331

    Article  PubMed  CAS  Google Scholar 

  24. Laferrière NB, MacRae TH, Brown DL (1997) Tubulin synthesis and assembly in differentiating neurons. Biochem Cell Biol 75(2):103–117

    Article  PubMed  Google Scholar 

  25. Hoffman PN, Cleveland DW (1988) Neurofilament and tubulin expression recapitulates the developmental program during axonal regeneration: induction of a specific beta-tubulin isotype. Proc Natl Acad Sci USA 85(12):4530–4533

    Article  PubMed  CAS  Google Scholar 

  26. Burgoyne RD, Cambray-Deakin MA, Lewis SA et al (1988) Differential distribution of beta-tubulin isotypes in cerebellum. EMBO J 7(8):2311–2319

    PubMed  CAS  Google Scholar 

  27. Joshi HC, Cleveland DW (1989) Differential utilization of beta-tubulin isotypes in differentiating neurites. J Cell Biol 109(2):663–673

    Article  PubMed  CAS  Google Scholar 

  28. Lee MK, Rebhun LI, Frankfurter A (1990) Post-translational modification of class III beta-tubulin. Proc Natl Acad Sci USA 87(18):7195–7199

    Article  PubMed  CAS  Google Scholar 

  29. Moskowitz PF, Smith R, Pickett J et al (1993) Expression of the class III beta-tubulin gene during axonal regeneration of rat dorsal root ganglion neurons. J Neurosci Res 34(1):129–134

    Article  PubMed  CAS  Google Scholar 

  30. McDonald WI, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127

    Article  PubMed  CAS  Google Scholar 

  31. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452

    Article  PubMed  CAS  Google Scholar 

  32. Ziemann U, Wahl M, Hattingen E, Tumani H (2011) Development of biomarkers for multiple sclerosis as a neurodegenerative disorder. Prog Neurobiol. doi:10.1016/j.pneurobio.2011.04.007 (in press)

  33. Tumani H, Hartung HP, Hemmer B et al (2009) Cerebrospinal fluid biomarkers in multiple sclerosis. Neurobiol Dis 35(2):117–127

    Article  PubMed  CAS  Google Scholar 

  34. Bielekova B, Martin R (2004) Development of biomarkers in multiple sclerosis. Brain 127:1463–1478

    Article  PubMed  Google Scholar 

  35. Lucchinetti C, Brück W, Parisi J et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717

    Article  PubMed  CAS  Google Scholar 

  36. Hein K, Kohler A, Diem R et al (2008) Biological marker for axonal degeneration in CSF and blood of patient with the first event indicative for multiple sclerosis. Neurosci Lett 436:72–76

    Article  CAS  Google Scholar 

  37. Bauer NG, Richter-Landsberg C et al (2009) Role of the oligodendroglial cytoskeleton in differentiation and myelination. Glia 57(16):1691–1705

    Article  PubMed  Google Scholar 

  38. Salzer J, Svenningsson A, Sundstrom P (2010) Neurofilament light as a prognostic marker in multiple sclerosis. Mult Scler 16:287–292

    Article  PubMed  CAS  Google Scholar 

  39. Norgren N, Sundström P, Svenningsson A et al (2004) Neurofilament and glial fibrillary acidic protein in multiple sclerosis. Neurology 63(9):1586–1590

    Article  PubMed  CAS  Google Scholar 

  40. Axelsson M, Malmeström C, Nilsson S et al (2010) Glial fibrillary acidic protein: a potential biomarker for progression in multiple sclerosis. J Neurol 258(5):882–888

    Article  Google Scholar 

  41. Trapp BD, Bö L, Mörk S, Chang A (1999) Pathogenesis of tissue injury in MS lesions. J Neuroimmunol 98(1):49–56

    Article  PubMed  CAS  Google Scholar 

  42. Gresle MM, Butzkueven H, Shaw G (2011) Neurofilament proteins as body fluid biomarkers of neurodegeneration in multiple sclerosis. Mult Scler Int 2011:315406. doi:10.1155/2011/315406

  43. Gunnarsson M, Malmestrom C, Axelsson M et al (2011) Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. Ann Neurol 69:83–89

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Madeddu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madeddu, R., Farace, C., Tolu, P. et al. Cytoskeletal proteins in the cerebrospinal fluid as biomarker of multiple sclerosis. Neurol Sci 34, 181–186 (2013). https://doi.org/10.1007/s10072-012-0974-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-012-0974-4

Keywords

Navigation