Resting-state brain networks: literature review and clinical applications

Abstract

This review focuses on resting-state functional connectivity, a functional MRI technique which allows the study of spontaneous brain activity generated under resting conditions. This approach is useful to explore the brain’s functional organization and to examine if it is altered in neurological or psychiatric diseases. Resting-state functional connectivity has revealed a number of networks which are consistently found in healthy subjects and represent specific patterns of synchronous activity. In this review, we examine the behavioral, physiological and neurological evidences relevant to this coherent brain activity and, in particular, to each network. The investigation of functional connectivity appears promising from a clinical perspective, considering the amount of evidence regarding the importance of spontaneous activity and that resting-state paradigms are inherently simple to implement. We also discuss some examples of existing clinical applications, such as in Alzheimer’s disease, and emerging possibilities such as in pre-operative mapping and disorders of consciousness.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Abou-Elseoud A, Starck T, Remes J, Nikkinen J, Tervonen O, Kiviniemi V (2010) The effect of model order selection in group PICA. Hum Brain Mapp 31:1207–1216

    PubMed  Google Scholar 

  2. 2.

    Albert NB, Robertson EM, Miall RC (2009) The resting human brain and motor learning. Curr Biol 19:1023–1027

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Allen G, Barnard H, McColl R, Hester AL, Fields JA, Weiner MF, Ringe WK, Lipton AM, Brooker M, McDonald E, Rubin CD, Cullum CM (2007) Reduced hippocampal functional connectivity in Alzheimer disease. Arch Neurol 64:1482–1487

    PubMed  Article  Google Scholar 

  4. 4.

    Andrews K, Murphy L, Munday R, Littlewood C (1996) Misdiagnosis of the vegetative state: retrospective study in a rehabilitation unit. BMJ 313:13–16

    PubMed  CAS  Google Scholar 

  5. 5.

    Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013

    PubMed  Article  Google Scholar 

  6. 6.

    Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    Biswal BB, Mennes M, Zuo XN, Gohel S et al (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107:4734–4739

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Bluhm RL, Osuch EA, Lanius RA, Boksman K, Neufeld RW, Théberge J, Williamson P (2008) Default mode network connectivity: effects of age, sex, and analytic approach. Neuroreport 19:887–891

    PubMed  Article  Google Scholar 

  9. 9.

    Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K, Neufeld RW, Théberge J, Schaefer B, Williamson P (2007) Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr Bull 33:1004–1012

    PubMed  Article  Google Scholar 

  10. 10.

    Boly M, Phillips C, Tshibanda L, Vanhaudenhuyse A, Schabus M, Dang-Vu TT, Moonen G, Hustinx R, Maquet P, Laureys S (2008) Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann N Y Acad Sci 1129:119–129

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Boly M, Tshibanda L, Vanhaudenhuyse A, Noirhomme Q, Schnakers C, Ledoux D, Boveroux P, Garweg C, Lambermont B, Phillips C, Luxen A, Moonen G, Bassetti C, Maquet P, Laureys S (2009) Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp 30:2393–2400

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Bonavita S, Gallo A, Sacco R, Corte MD, Bisecco A, Docimo R, Lavorgna L, Corbo D, Costanzo AD, Tortora F, Cirillo M, Esposito F, Tedeschi G (2011) Distributed changes in default-mode resting-state connectivity in multiple sclerosis. Mult Scler 17:411–422

    Google Scholar 

  13. 13.

    Boveroux P, Vanhaudenhuyse A, Bruno MA, Noirhomme Q, Lauwick S, Luxen A, Degueldre C, Plenevaux A, Schnakers C, Phillips C, Brichant JF, Bonhomme V, Maquet P, Greicius MD, Laureys S, Boly M (2010) Breakdown of within-and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113:1038–1053

    Google Scholar 

  14. 14.

    Buckner RL et al (2010) Human functional connectivity: new tools, unresolved questions. Proc Natl Acad Sci USA 107:10769–10770

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    PubMed  Article  Google Scholar 

  16. 16.

    Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, Johnson KA (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29:1860–1873

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, Sheline YI, Klunk WE, Mathis CA, Morris JC, Mintun MA (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25:7709–7717

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Buckner RL, Vincent JL (2007) Unrest at rest: default activity and spontaneous network correlations. Neuroimage 37:1091–1096

    PubMed  Article  Google Scholar 

  19. 19.

    Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14:140–151

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Calhoun VD, Eichele T, Pearlson G (2009) Functional brain networks in schizophrenia: a review. Front Hum Neurosci 3:17

    PubMed  Article  Google Scholar 

  21. 21.

    Calhoun VD, Kiehl KA, Pearlson GD (2008) Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum Brain Mapp 29:828–838

    PubMed  Article  Google Scholar 

  22. 22.

    Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583

    PubMed  Article  Google Scholar 

  23. 23.

    Cauda F, Micon BM, Sacco K, Duca S, D’Agata F, Geminiani G, Canavero S (2009) Disrupted intrinsic functional connectivity in the vegetative state. J Neurol Neurosurg Psychiatry 80:429–431

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Coleman MR, Davis MH, Rodd JM, Robson T, Ali A, Owen AM, Pickard JD (2009) Towards the routine use of brain imaging to aid the clinical diagnosis of disorders of consciousness. Brain 132:2541–2552

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2000) Mapping functionally related regions of brain with functional connectivity MR imaging. Am J Neuroradiol 21:1636–1644

    PubMed  CAS  Google Scholar 

  27. 27.

    Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am J Neuroradiol 22:1326–1333

    PubMed  CAS  Google Scholar 

  28. 28.

    Corradi-Dell’Acqua C, Tomelleri L, Bellani M, Rambaldelli G, Cerini R, Pozzi-Mucelli R, Balestrieri M, Tansella M, Brambilla P (2011) Thalamic-insular dysconnectivity in schizophrenia: evidence from structural equation modeling. Hum Brain Mapp

  29. 29.

    Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 213:525–533

    PubMed  Article  Google Scholar 

  31. 31.

    Decety J, Sommerville JA (2003) Shared representations between self and other: a social cognitive neuroscience view. Trends Cogn Sci 7:527–533

    PubMed  Article  Google Scholar 

  32. 32.

    Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104:11073–11078

    Google Scholar 

  33. 33.

    De Luca M, Smith S, De Stefano N, Federico A, Matthews PM (2005) Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Exp Brain Res 167:587–594

    PubMed  Article  Google Scholar 

  34. 34.

    De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29:1359–1367

    PubMed  Article  Google Scholar 

  35. 35.

    Dronkers NF, Wilkins DP, Van Valin RD, Redfern BB Jr, Jaeger JJ (2004) Lesion analysis of the brain areas involved in language comprehension. Cognition 92:145–177

    PubMed  Article  Google Scholar 

  36. 36.

    Esposito F, Bertolino A, Scarabino T, Latorre V, Blasi G, Popolizio T, Tedeschi G, Cirillo S, Goebel R, Di Salle F (2006) Independent component model of the default-mode brain function: assessing the impact of active thinking. Brain Res Bull 70:263–269

    PubMed  Article  Google Scholar 

  37. 37.

    Esposito F, Aragri A, Pesaresi I, Cirillo S, Tedeschi G, Marciano E, Goebel R, Di Salle F (2008) Independent component model of the default-mode brain function: combining individual-level and population-level analyses in resting-state fMRI. Magn Reson Imaging 26:905–913

    PubMed  Article  Google Scholar 

  38. 38.

    Esposito F, Aragri A, Latorre V, Popolizio T, Scarabino T, Cirillo S, Marciano E, Tedeschi G, Di Salle F (2009) Does the default-mode functional connectivity of the brain correlate with working-memory performances? Arch Ital Biol 147:11–20

    PubMed  CAS  Google Scholar 

  39. 39.

    Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, Matthews PM, Beckmann CF, Mackay CE (2009) Distinct patterns of brain activity in young carriers of the APOE-982epsilon4 allele. Proc Natl Acad Sci USA 106:7209–7214

    Google Scholar 

  40. 40.

    Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103:10046–10051

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Fox MD, Greicius M (2010) Clinical applications of resting state functional connectivity. Front Syst Neurosci 4:19

    PubMed  Google Scholar 

  42. 42.

    Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Fransson P, Marrelec G (2008) The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. Neuroimage 42:1178–1184

    PubMed  Article  Google Scholar 

  45. 45.

    French CC, Beaumont JG (1984) A critical review of EEG coherence studies of hemisphere function. Int J Psychophysiol 1:241–254

    PubMed  CAS  Article  Google Scholar 

  46. 46.

    Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD (2007) Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry 164:450–457

    PubMed  Article  Google Scholar 

  47. 47.

    Giacino JT (2004) The vegetative and minimally conscious states: consensus-based criteria for establishing diagnosis and prognosis. Neuro Rehabil 19:293–298

    Google Scholar 

  48. 48.

    Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101:4637–4642

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Greicius MD, Kiviniemi V, Tervonen O, Vainionpää V, Alahuhta S, Reiss AL, Menon V (2008) Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29:839–847

    PubMed  Article  Google Scholar 

  51. 51.

    Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19:72–78

    PubMed  Article  Google Scholar 

  52. 52.

    Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT (2006) Brain connectivity related to working memory performance. J Neurosci 26:13338–13343

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Hampson M, Tokoglu F, Sun Z, Schafer RJ, Skudlarski P, Gore JC, Constable RT (2006) Connectivity-behavior analysis reveals that functional connectivity between left BA39 and Broca’s area varies with reading ability. Neuroimage 31:513–519

    PubMed  Article  Google Scholar 

  55. 55.

    Harrison BJ, Yücel M, Pujol J, Pantelis C (2007) Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophr Res 91:82–86

    PubMed  Article  Google Scholar 

  56. 56.

    Hasson U, Nusbaum HC, Small SL (2009) Task-dependent organization of brain regions active during rest. Proc Natl Acad Sci USA 106:10841–10846

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    Himberg J, Hyvärinen A, Esposito F (2004) Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22:1214–1222

    PubMed  Article  Google Scholar 

  58. 58.

    Hoptman MJ, D’Angelo D, Catalano D, Mauro CJ, Shehzad ZE, Kelly AM, Castellanos FX, Javitt DC, Milham MP (2010) Amygdalofrontal functional disconnectivity and aggression in schizophrenia. Schizophr Bull 36:1020–1028

    PubMed  Article  Google Scholar 

  59. 59.

    Horovitz SG, Fukunaga M, de Zwart JA, van Gelderen P, Fulton SC, Balkin TJ, Duyn JH (2008) Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 29:671–682

    PubMed  Article  Google Scholar 

  60. 60.

    Horovitz SG, Braun AR, Carr WS, Picchioni D, Balkin TJ, Fukunaga M, Duyn JH (2009) Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci USA 106:11376–11381

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Hutchison RM, Mirsattari SM, Jones CK, Gati JS, Leung LS (2010) Functional networks in the anesthetized rat brain revealed by independent component analysis of resting-state FMRI. J Neurophysiol 1036:3398–3406

    Article  Google Scholar 

  62. 62.

    Jafri MJ, Pearlson GD, Stevens M, Calhoun VD (2008) A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage 39:1666–1681

    PubMed  Article  Google Scholar 

  63. 63.

    Kiviniemi V, Kantola JH, Jauhiainen J, Hyvärinen A, Tervonen O (2003) Independent component analysis of nondeterministic fMRI signal sources. Neuroimage 19:253–260

    PubMed  Article  Google Scholar 

  64. 64.

    Koenig T, Studer D, Hubl D, Melie L, Strik WK (2005) Brain connectivity at different time-scales measured with EEG. Philos Trans R Soc Lond B Biol Sci 360:1015–1023

    PubMed  CAS  Article  Google Scholar 

  65. 65.

    Koyama MS, Kelly C, Shehzad Z, Penesetti D, Castellanos FX, Milham MP (2010) Reading networks at rest. Cereb Cortex 20:2549–2559

    PubMed  Article  Google Scholar 

  66. 66.

    Kuperberg G, Heckers S (2000) Schizophrenia and cognitive function. Curr Opin Neurobiol 10:205–210

    PubMed  CAS  Article  Google Scholar 

  67. 67.

    Laureys S, Owen AM, Schiff ND (2004) Brain function in coma, vegetative state, and related disorders. Lancet Neurol 3:537–546

    PubMed  Article  Google Scholar 

  68. 68.

    Laureys S (2005) The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn Sci 9:556–559

    PubMed  Article  Google Scholar 

  69. 69.

    Laureys S, Perrin F, Schnakers C, Boly M, Majerus S (2005) Residual cognitive function in comatose, vegetative and minimally conscious states. Curr Opin Neurol 18:726–733

    PubMed  Article  Google Scholar 

  70. 70.

    Li CSR, Yan P, Bergquist KL, Sinha R (2007) Greater activation of the “default” brain regions predicts stop signal errors. NeuroImage 38:640–648

    PubMed  Article  Google Scholar 

  71. 71.

    Li SJ, Li Z, Wu G, Zhang MJ, Franczak M, Antuono PG (2002) Alzheimer Disease: evaluation of a functional MR imaging index as a marker. Radiology 225:253–259

    PubMed  Article  Google Scholar 

  72. 72.

    Liang M, Zhou Y, Jiang T, Liu Z, Tian L, Liu H, Hao Y (2006) Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport 17:209–213

    PubMed  Article  Google Scholar 

  73. 73.

    Liu H, Buckner RL, Talukdar T, Tanaka N, Madsen JR, Stufflebeam SM (2009) Task-free presurgical mapping using functional magnetic resonance imaging intrinsic activity. J Neurosurg 111:746–754

    PubMed  Article  Google Scholar 

  74. 74.

    Locatelli T, Cursi M, Liberati D, Franceschi M, Comi G (1998) EEG coherence in Alzheimer’s disease. Electroencephalogr Clin Neurophysiol 106:229–237

    PubMed  CAS  Article  Google Scholar 

  75. 75.

    Long XY, Zuo XN, Kiviniemi V, Yang Y, Zou QH, Zhu CZ, Jiang TZ, Yang H, Gong QY, Wang L, Li KC, Xie S, Zang YF (2008) Default mode network as revealed with multiple methods for resting-state functional MRI analysis. J Neurosci Methods 171:349–355

    PubMed  Article  Google Scholar 

  76. 76.

    Lowe MJ, Phillips MD, Lurito JT, Mattson D, Dzemidzic M, Mathews VP (2002) Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results. Radiol 224:184–192

    Google Scholar 

  77. 77.

    Ma L, Wang B, Chen X, Xiong J (2008) Detecting functional connectivity in the resting brain: a comparison between ICA and CCA. Magn Reson Imaging 25:47–56

    Article  Google Scholar 

  78. 78.

    Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA 104:13170–13175

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ (1998) Analysis of FMRI data by blind separation into independent spatial components. Hum Brain Mapp 6:160–188

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    Mennes M, Kelly C, Zuo XN, Di Martino A, Biswal BB, Castellanos FX, Milham MP (2010) Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity. Neuroimage 50:1690–1701

    PubMed  Article  Google Scholar 

  81. 81.

    Minati L, Edginton T, Bruzzone MG, Giaccone G (2009) Current concepts in Alzheimer’s disease: a multidisciplinary review. Am J Alzheimers Dis Other Demen 24:95–121

    PubMed  Article  Google Scholar 

  82. 82.

    Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE (1997) Functional brain imaging in Alzheimer s disease. Ann Neurol 42:85–94

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Mohammadi B, Kollewe K, Samii A, Krampfl K, Dengler R, Münte TF (2009) Changes of resting state brain networks in amyotrophic lateral sclerosis. Exp Neurol 217:147–153

    Google Scholar 

  84. 84.

    Monti MM, Vanhaudenhuyse A, Coleman MR, Boly M, Pickard JD, Tshibanda L, Owen AM, Laureys S (2010) Willful modulation of brain activity in disorders of consciousness. N Engl J Med 362:579–589

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Noirhomme Q, Soddu A, Lehembre R, Vanhaudenhuyse A, Boveroux P, Boly M, Laureys S (2010) Brain connectivity in pathological and pharmacological coma. Front Syst Neurosci 4:160

    PubMed  Article  Google Scholar 

  86. 86.

    Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD (2006) Detecting awareness in the vegetative state. Science 313:1402

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    Owen AM, Coleman MR (2008) Functional neuroimaging of the vegetative state. Nat Rev Neurosci 9:235–243

    PubMed  CAS  Article  Google Scholar 

  88. 88.

    Raichle ME (2010) Two views of brain function. Trends Cogn Sci 14:180–190

    PubMed  Article  Google Scholar 

  89. 89.

    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682

    PubMed  CAS  Article  Google Scholar 

  90. 90.

    Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476

    PubMed  CAS  Article  Google Scholar 

  91. 91.

    Raichle ME, Snyder AZ et al (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37:1083–1090

    PubMed  Article  Google Scholar 

  92. 92.

    Rocca MA, Valsasina P, Absinta M, Riccitelli G, Rodegher ME, Misci P, Rossi P, Falini A, Comi G, Filippi M (2010) Default-mode network dysfunction and cognitive impairment in progressive MS. Neurol 74:1252–1259

    Google Scholar 

  93. 93.

    Roy AK, Shehzad Z, Margulies DS, Kelly AM, Uddin LQ, Gotimer K, Biswal BB, Castellanos FX, Milham MP (2009) Functional connectivity of the human amygdala using resting state fMRI. Neuroimage 45:614–626

    PubMed  Article  Google Scholar 

  94. 94.

    Rosazza C, Minati L, Ghielmetti F, Mandelli ML, Bruzzone MG (2011) Functional connectivity during resting-state FMRI: study of the correspondence between independent component analysis (ICA) and region-of-interest (ROI)-based methods. Am J Neuroradiol (in press)

  95. 95.

    Schnakers C, Vanhaudenhuyse A, Giacino J, Ventura M, Boly M, Majerus S, Moonen G, Laureys S (2009) Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC Neurol 21:9–35

    Google Scholar 

  96. 96.

    Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356

    PubMed  CAS  Article  Google Scholar 

  97. 97.

    Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52

    PubMed  CAS  Article  Google Scholar 

  98. 98.

    Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM et al (1997) Common blood flow changes across visual tasks. II. Decreases in cerebral cortex. J Cogn Neurosci 9:648–663

    Article  Google Scholar 

  99. 99.

    Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Sorg C, Riedl V, Mühlau M, Calhoun VD, Eichele T, Läer L, Drzezga A, Förstl H, Kurz A, Zimmer C, Wohlschläger AM (2007) Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci USA 104:18760–18765

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol. 4:e1000100

  102. 102.

    Stevens WD, Buckner RL, Schacter DL (2010) Correlated low-frequency BOLD fluctuations in the resting human brain are modulated by recent experience in category-preferential visual regions. Cereb Cortex 20:1997–2006

    PubMed  Article  Google Scholar 

  103. 103.

    Tedeschi G, Trojsi F, Tessitore A, Corbo D, Sagnelli A, Paccone A, D’Ambrosio A, Piccirillo G, Cirillo M, Cirillo S, Monsurrò MR, Esposito F (2010) Interaction between aging and neurodegeneration in amyotropic lateral sclerosis. Neurobiol Aging. [Epub ahead of print]

  104. 104.

    Tononi G (2004) An information integration theory of consciousness. BMC Neurosci 5:42

    PubMed  Article  Google Scholar 

  105. 105.

    Turken AU, Dronkers NF (2011) The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front Syst Neurosci 5:1

    PubMed  Article  Google Scholar 

  106. 106.

    Van den Heuvel M, Mandl R, Hulshoff Pol H (2008) Normalized cut group clustering of resting-state FMRI data. PLoS One 3:e2001

    PubMed  Article  CAS  Google Scholar 

  107. 107.

    Van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534

    PubMed  Article  CAS  Google Scholar 

  108. 108.

    Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL (2010) Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 103:297–321

    PubMed  Article  Google Scholar 

  109. 109.

    Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, Bruno MA, Boveroux P, Schnakers C, Soddu A, Perlbarg V, Ledoux D, Brichant JF, Moonen G, Maquet P, Greicius MD, Laureys S, Boly M (2010) Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133:161–171

    PubMed  Article  Google Scholar 

  110. 110.

    Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, Wu T, Jiang T, Li K (2006) Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage 31:496–504

    PubMed  Article  Google Scholar 

  112. 112.

    Weissman DH, Roberts KC, Visscher KM, Woldorff MG (2006) The neural bases of momentary lapses in attention. Nat Neurosci 9:971–978

    PubMed  CAS  Article  Google Scholar 

  113. 113.

    Welsh RC, Chen AC, Taylor SF (2010) Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in schizophrenia. Schizophr Bull 36:713–722

    PubMed  Article  Google Scholar 

  114. 114.

    Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW et al (2009) Hyperactivity, hyperconnectivity of the default network in schizophrenia, in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci USA 106:1279–1284

    PubMed  CAS  Article  Google Scholar 

  115. 115.

    Zhang D, Johnston JM, Fox MD, Leuthardt EC, Grubb RL, Chicoine MR, Smyth MD, Snyder AZ, Raichle ME, Shimony JS (2009) Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience. Neurosurgery 65:226–236

    PubMed  Article  Google Scholar 

  116. 116.

    Zhang D, Raichle ME (2010) Disease and the brain’s dark energy. Nat Rev Neurol 6:15–28

    PubMed  Article  Google Scholar 

  117. 117.

    Zhou Y, Liang M, Tian L, Wang K, Hao Y, Liu H, Liu Z, Jiang T (2007) Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res 97:194–205

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Maria Grazia Bruzzone and Dr. Davide Sattin for useful advice on the clinical applications and general revisions to the manuscript.

Conflict of interest

All authors declare that they do not have any real or perceived conflicts of interest pertaining to the present study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cristina Rosazza.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rosazza, C., Minati, L. Resting-state brain networks: literature review and clinical applications. Neurol Sci 32, 773–785 (2011). https://doi.org/10.1007/s10072-011-0636-y

Download citation

Keywords

  • Functional connectivity
  • Resting state
  • Spontaneous brain activity
  • Coherence
  • Cognitive correlates
  • Clinical applications