Skip to main content

Advertisement

Log in

The concept of FDG-PET endophenotype in Alzheimer’s disease

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Often viewed as a potential tool for preclinical diagnosis in early asymptomatic stages of Alzheimer’s disease (AD), the term “endophenotype” has acquired a recent popularity in the field. In this review, we analyze the construct of endophenotype—originally designed to discover genes, and examine the literature on potential endophenotypes for the late-onset form of AD (LOAD). We focus on the [18F]-fluoro-2-deoxyglucose (FDG) PET technique, which shows a characteristic pattern of hypometabolism in AD-related regions in asymptomatic carriers of the ApoE E4 allele and in children of AD mothers. We discuss the pathophysiological significance and the positive predictive accuracy of an FDG-endophenotype for LOAD in asymptomatic subjects, and discuss several applications of this endophenotype in the identification of both promoting and protective factors. Finally, we suggest that the term “endophenotype” should be reserved to the study of risk factors, and not to the preclinical diagnosis of LOAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brookmeyer R et al (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191

    Article  PubMed  Google Scholar 

  2. Ohm TG et al (1995) Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer’s disease-related neurofibrillary changes. Neuroscience 64(1):209–217

    Article  PubMed  CAS  Google Scholar 

  3. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  PubMed  CAS  Google Scholar 

  4. Larson EB et al (2004) Survival after initial diagnosis of Alzheimer disease. Ann Intern Med 140(7):501–509

    PubMed  Google Scholar 

  5. Mölsä PK, Marttila RJ, Rinne UK (1986) Survival and cause of death in Alzheimer’s disease and multi-infarct dementia. Acta Neurol Scand 74(2):103–107

    Article  PubMed  Google Scholar 

  6. Reiman EM (2007) Linking brain imaging and genomics in the study of Alzheimer’s disease and aging. Ann N Y Acad Sci 1097:94–113

    Article  PubMed  CAS  Google Scholar 

  7. Bearden CE, Freimer NB (2006) Endophenotypes for psychiatric disorders: ready for primetime? Trends Genet 22(6):306–313

    Article  PubMed  CAS  Google Scholar 

  8. Leboyer M et al (1998) Psychiatric genetics: search for phenotypes. Trends Neurosci 21(3):102–105

    Article  PubMed  CAS  Google Scholar 

  9. Sunderland T et al (2006) Biomarkers in the diagnosis of Alzheimer’s disease: are we ready? J Geriatr Psychiatry Neurol 19(3):172–179

    Article  PubMed  Google Scholar 

  10. John B, Lewis KR (1966) Chromosome variability and geographic distribution in insects. Science 152(3723):711–721

    Article  PubMed  CAS  Google Scholar 

  11. Gottesman II, Shields J (1973) Genetic theorizing and schizophrenia. Br J Psychiatry 122(566):15–30

    Article  PubMed  CAS  Google Scholar 

  12. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160(4):636–645

    Article  PubMed  Google Scholar 

  13. Hasler G et al (2006) Toward constructing an endophenotype strategy for bipolar disorders. Biol Psychiatry 60(2):93–105

    Article  PubMed  Google Scholar 

  14. Cadenhead KS et al (2000) Modulation of the startle response and startle laterality in relatives of schizophrenic patients and in subjects with schizotypal personality disorder: evidence of inhibitory deficits. Am J Psychiatry 157(10):1660–1668

    Article  PubMed  CAS  Google Scholar 

  15. Braff D, Geyer M, Swerdlow N (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 156:234–258

    Article  PubMed  CAS  Google Scholar 

  16. Braff D, Freedman R (2002) Endophenotypes in studies of the genetics of schizophrenia. In: Davis K et al (eds) Neuropsychopharamcology: the fifth generation of progress, 5th edn. Lippincott Williams and Wilkins, Philadelphia, pp 703–716

    Google Scholar 

  17. Diefendorf A, Dodge R (1908) An experimental study of the ocular reactions of the insane from photographic records. Brain 31:451–489

    Article  Google Scholar 

  18. Lee K, Williams L (2000) Eye movement dysfunction as a biological marker of risk for schizophrenia. Aust N Z J 34(Suppl):91–100

    Google Scholar 

  19. Freedman R et al (1997) Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 94:587–592

    Article  PubMed  CAS  Google Scholar 

  20. Arolt V et al (1996) Eye tracking dysfunction is a putative phenotypic susceptibility marker of schizophrenia and maps to a locus on chromosome 6p in families with multiple occurrence of the disease. Am J Med Genet 67(6):564–579

    Article  PubMed  CAS  Google Scholar 

  21. Gasperoni TL et al (2003) Genetic linkage and association between chromosome 1q and working memory function in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 116B(1):8–16

    Article  PubMed  Google Scholar 

  22. Callicott JH et al (2003) Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. Am J Psychiatry 160(4):709–719

    Article  PubMed  Google Scholar 

  23. Corder EH et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923

    Article  PubMed  CAS  Google Scholar 

  24. Poirier J et al (1993) Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet 342(8873):697–699

    Article  PubMed  CAS  Google Scholar 

  25. Cupples LA et al (2004) Estimating risk curves for first-degree relatives of patients with Alzheimer’s disease: the REVEAL study. Genet Med. 6(4):192–196

    Article  PubMed  Google Scholar 

  26. Bloss CS et al (2008) Decreased cognition in children with risk factors for Alzheimer’s disease. Biol Psychiatry 64(10):904–906

    Article  PubMed  Google Scholar 

  27. Ponomareva NV, Korovaitseva GI, Rogaev EI (2008) EEG alterations in non-demented individuals related to apolipoprotein E genotype and to risk of Alzheimer disease. Neurobiol Aging 29(6):819–827

    Article  PubMed  CAS  Google Scholar 

  28. Younkin SG et al (1998) Genetic elevation of plasma amyloid ß protein in typical late onset Alzheimer’s disease. Abstr Soc Neurosci 24:263

    Google Scholar 

  29. Sunderland T et al (2004) Cerebrospinal fluid beta-amyloid1–42 and tau in control subjects at risk for Alzheimer’s disease: the effect of APOE epsilon4 allele. Biol Psychiatry 56(9):670–676

    Article  PubMed  CAS  Google Scholar 

  30. Honea RA et al (2010) Reduced gray matter volume in normal adults with a maternal family history of Alzheimer disease. Neurology 74(2):113–120

    Article  PubMed  CAS  Google Scholar 

  31. Klunk WE et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55(3):306–319

    Article  PubMed  CAS  Google Scholar 

  32. Reiman EM et al (2009) Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc Natl Acad Sci USA 106(16):6820–6825

    Article  PubMed  CAS  Google Scholar 

  33. Mosconi L et al (2010) Increased fibrillar amyloid-{beta} burden in normal individuals with a family history of late-onset Alzheimer’s. Proc Natl Acad Sci USA 107(13):5949–5954

    Article  PubMed  CAS  Google Scholar 

  34. de Leon MJ et al (1983) Computed tomography and positron emission transaxial tomography evaluations of normal aging and Alzheimer’s disease. J Cereb Blood Flow Metab 3(3):391–394

    Article  PubMed  Google Scholar 

  35. Magistretti P et al (1999) Energy on demand. Science 283(5401):496–497

    Article  PubMed  CAS  Google Scholar 

  36. Rocher AB et al (2003) Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. Neuroimage 20(3):1894–1898

    Article  PubMed  Google Scholar 

  37. de Leon MJ et al (2001) Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-d-glucose/positron-emission tomography (FDG/PET). Proc Natl Acad Sci USA 98(19):10966–10971

    Article  PubMed  Google Scholar 

  38. De Santi S et al (2001) Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 22(4):529–539

    Article  PubMed  Google Scholar 

  39. Mosconi L et al (2008) Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiol Aging 29(5):676–692

    Article  PubMed  CAS  Google Scholar 

  40. Herholz K et al (2002) Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 17(1):302–316

    Article  PubMed  CAS  Google Scholar 

  41. Alexander GE et al (2002) Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies. Am J Psychiatry 159(5):738–745

    Article  PubMed  Google Scholar 

  42. Mosconi L (2005) Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med. Mol Imaging 32(4):486–510

    Article  PubMed  CAS  Google Scholar 

  43. Li Y et al (2008) Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 35(12):2169–2181

    Article  PubMed  Google Scholar 

  44. Reisberg B et al (2008) Mild cognitive impairment (MCI): a historical perspective. Int Psychogeriatr 20(1):18–31

    PubMed  Google Scholar 

  45. Gauthier S et al (2006) Mild cognitive impairment. Lancet 367(9518):1262–1270

    Article  PubMed  Google Scholar 

  46. Nestor PJ et al (2003) Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann Neurol 54(3):343–351

    Article  PubMed  Google Scholar 

  47. Mosconi L et al (2005) Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 64(11):1860–1867

    Article  PubMed  CAS  Google Scholar 

  48. Mosconi L et al (2006) Visual rating of medial temporal lobe metabolism in mild cognitive impairment and Alzheimer’s disease using FDG-PET. Eur J Nucl Med Mol Imaging 33(2):210–221

    Article  PubMed  Google Scholar 

  49. Minoshima S et al (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 42(1):85–94

    Article  PubMed  CAS  Google Scholar 

  50. Drzezga A et al (2003) Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 30(8):1104–1113

    Article  PubMed  Google Scholar 

  51. Mosconi L et al (2004) MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET. Neurology 63(12):2332–2340

    PubMed  CAS  Google Scholar 

  52. Drzezga A et al (2005) Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. J Nucl Med 46(10):1625–1632

    PubMed  CAS  Google Scholar 

  53. Chételat G et al (2003) Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology 60(8):1374–1377

    PubMed  Google Scholar 

  54. Reiman EM, Langbaum JBS, Tariot PN (2010) Alzheimer’s prevention initiative: a proposal to evaluate presymptomatic treatments as quickly as possible. Biomark Med 4(1):3–14

    Article  PubMed  Google Scholar 

  55. Small GW (2006) Diagnostic issues in dementia: neuroimaging as a surrogate marker of disease. J Geriatr Psychiatry Neurol 19(3):180–185

    Article  PubMed  Google Scholar 

  56. Reiman EM et al (1996) Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 334(12):752–758

    Article  PubMed  CAS  Google Scholar 

  57. Small GW et al (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci USA 97(11):6037–6042

    Article  PubMed  CAS  Google Scholar 

  58. Reiman EM et al (2001) Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proc Natl Acad Sci USA 98(6):3334–3339

    Article  PubMed  CAS  Google Scholar 

  59. Reiman EM et al (2004) Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc Natl Acad Sci USA 101(1):284–289

    Article  PubMed  CAS  Google Scholar 

  60. Reiman EM et al (2005) Correlations between apolipoprotein E epsilon4 gene dose and brain-imaging measurements of regional hypometabolism. Proc Natl Acad Sci USA 102(23):8299–8302

    Article  PubMed  CAS  Google Scholar 

  61. Rimajova M et al (2008) Fluoro-2-deoxy-d-glucose (FDG)-PET in APOEepsilon4 carriers in the Australian population. J Alzheimers Dis 13(2):137–146

    PubMed  CAS  Google Scholar 

  62. Mosconi L et al (2008) Hypometabolism and altered cerebrospinal fluid markers in normal apolipoprotein E E4 carriers with subjective memory complaints. Biol Psychiatry 63(6):609–618

    Article  PubMed  CAS  Google Scholar 

  63. Small GW et al (1995) Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 273(12):942–947

    Article  PubMed  CAS  Google Scholar 

  64. Mosconi L et al (2007) Maternal family history of Alzheimer’s disease predisposes to reduced brain glucose metabolism. Proc Natl Acad Sci USA 104(48):9067–9072

    Article  Google Scholar 

  65. Mosconi L et al (2009) Declining brain glucose metabolism in normal individuals with a maternal history of Alzheimer disease. Neurology 72(6):513–520

    Article  PubMed  CAS  Google Scholar 

  66. Gatz M et al (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63(2):168–174

    Article  PubMed  Google Scholar 

  67. Raber J, Huang Y, Ashford JW (2004) ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiol Aging 25(5):641–650

    Article  PubMed  CAS  Google Scholar 

  68. Saunders AM et al (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43(8):1467–1472

    PubMed  CAS  Google Scholar 

  69. Poirier J (1994) Apolipoprotein E in animal models of CNS injury and in Alzheimer’s disease. Trends Neurosci 17(12):525–530

    Article  PubMed  CAS  Google Scholar 

  70. Holtzman DM et al (2000) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 97(6):2892–2897

    Article  PubMed  CAS  Google Scholar 

  71. Bell RD et al (2007) Transport pathways for clearance of human Alzheimer’s amyloid betapeptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 27:909–918

    PubMed  CAS  Google Scholar 

  72. Xu G et al (2008) The influence of parental history of Alzheimer’s disease and apolipoprotein E 4 on the BOLD signal during recognition memory. Brain 132(2):383–391

    Article  PubMed  Google Scholar 

  73. Bookheimer SY et al (2000) Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 343(7):450–456

    Article  PubMed  CAS  Google Scholar 

  74. Prince JA et al (2004) APOE epsilon4 allele is associated with reduced cerebrospinal fluid levels of Abeta42. Neurology 62(11):2116–2118

    PubMed  CAS  Google Scholar 

  75. Morris JC et al (2010) APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol 67(1):122–131

    Article  PubMed  CAS  Google Scholar 

  76. Mosconi L et al (2010) Maternal transmission of Alzheimer’s disease: prodromal metabolic phenotype and the search for genes. Hum Genomics 4(3):170–193

    PubMed  CAS  Google Scholar 

  77. Edland SD et al (1996) Increased risk of dementia in mothers of Alzheimer’s disease cases: evidence for maternal inheritance. Neurology 47(1):254–256

    PubMed  CAS  Google Scholar 

  78. Gómez-Tortosa E et al (2007) Variability of age at onset in siblings with familial Alzheimer disease. Arch Neurol 64(12):1743–1748

    Article  PubMed  Google Scholar 

  79. Parker WD, Filley CM, Parks JK (1990) Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology 40(8):1302–1303

    PubMed  Google Scholar 

  80. Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 20(Suppl 2):S265–S279

    PubMed  Google Scholar 

  81. Cardoso SM et al (2004) Mitochondria dysfunction of Alzheimer’s disease cybrids enhances Abeta toxicity. J Neurochem 89(6):1417–1426

    Article  PubMed  CAS  Google Scholar 

  82. Chen Y, Bidwell LC, Norton D (2006) Trait vs. state markers for schizophrenia: identification and characterization through visual processes. Curr Psychiatry Rev 2(4):431–438

    Article  PubMed  Google Scholar 

  83. Jagust W et al (2006) Brain imaging evidence of preclinical Alzheimer’s disease in normal aging. Ann Neurol 59(4):673–681

    Article  PubMed  Google Scholar 

  84. Mosconi L et al (2009) FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging 36(5):811–822

    Article  PubMed  CAS  Google Scholar 

  85. Gómez-Isla T et al (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16(14):4491–4500

    PubMed  Google Scholar 

  86. Fjell AM et al (2008) Morphometric changes in the episodic memory network and tau pathologic features correlate with memory performance in patients with mild cognitive impairment. Am J Neuroradiol 29(6):1183–1189

    Article  PubMed  CAS  Google Scholar 

  87. Jack CR et al (2009) Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain 132(Pt 5):1355–1365

    Article  PubMed  Google Scholar 

  88. Buckner RL et al (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29(6):1860–1873

    Article  PubMed  CAS  Google Scholar 

  89. Raichle ME et al (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682

    Article  PubMed  CAS  Google Scholar 

  90. Sleegers K et al (2010) The pursuit of susceptibility genes for Alzheimer’s disease: progress and prospects. Trends Genet 26(2):84–93

    Article  PubMed  CAS  Google Scholar 

  91. Glahn DC, Thompson PM, Blangero J (2007) Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function. Hum Brain Mapp 28:488–501

    Article  PubMed  Google Scholar 

  92. Jun G. et al. (2010) Meta-analysis Confirms CR1, CLU, and PICALM as Alzheimer Disease Risk Loci and Reveals Interactions With APOE Genotypes. Arch Neurol (ahead of print)

  93. Saykin AJ et al (2010) Alzheimer’s disease neuroimaging initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans. Alzheimer’s Dement 6(3):265–273

    Article  CAS  Google Scholar 

  94. Corder EH et al (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7(2):180–184

    Article  PubMed  CAS  Google Scholar 

  95. West HL, Rebeck GW, Hyman BT (1994) Frequency of the apolipoprotein E [epsilon] 2 allele is diminished in sporadic Alzheimer disease. Neurosci Lett 175(1–2):46–48

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel H. During.

Rights and permissions

Reprints and permissions

About this article

Cite this article

During, E.H., Osorio, R.S., Elahi, F.M. et al. The concept of FDG-PET endophenotype in Alzheimer’s disease. Neurol Sci 32, 559–569 (2011). https://doi.org/10.1007/s10072-011-0633-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-011-0633-1

Keywords

Navigation