Skip to main content

Advertisement

Log in

fMRI of the sensorimotor cortex in patients with traumatic brain injury after intensive rehabilitation

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

For evaluating the patterns of brain activation in sensorimotor areas following motor rehabilitation, seven male patients diagnosed with TBI underwent an fMRI study before and after being subjected to motor rehabilitation. Six patients showed a reduction in the BOLD signal of their motor cortical areas during the second fMRI evaluation. A decrease in cerebellum activation was also observed in two patients. Newly activated areas, were observed in four patients after treatment. In addition, an increase in the activation of the supplementary motor area (SMA) following rehabilitation was observed in only one test subject. The findings show that motor rehabilitation in TBI patients produces a decrease in the BOLD signal for the sensorimotor areas that were activated prior to treatment. In addition, we observed the recruitment of different brain areas to compensate for functional loss due to TBI in line with the cortical reorganisation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shen Y, Kou Z, Kreipke CW et al (2007) In vivo measurement of tissue damage, oxygen saturation changes and blood flow changes after experimental traumatic brain injury in rats using susceptibility weighted imaging. Magn Reson Imaging 25:219–227

    Article  PubMed  Google Scholar 

  2. Friston KJ, Holmes AP, Worsley KJ et al (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  3. Sidaros A, Skimminge A, Liptrot MG et al (2009) Long-term global and regional brain volume changes following severe traumatic brain injury: a longitudinal study with clinical correlates. NeuroImage 44:1–8

    Article  PubMed  Google Scholar 

  4. Bigler ED, Ryser DK, Gandhi P et al (2006) Day-of-injury computerized tomography, rehabilitation status, and development of cerebral atrophy in persons with traumatic brain injury. Am J Phys Med Rehabil 85:793–806

    Article  PubMed  Google Scholar 

  5. Wilde E, Chu Z, Bigler ED et al (2006) Diffusion tensor imaging in the corpus callosum in children after moderate to severe traumatic brain injury. J Neurotrauma 23(10):1412–1426

    Article  PubMed  Google Scholar 

  6. Arfanakis K, Haughton VM, Carew JD et al (2002) Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol 23:794–802

    PubMed  Google Scholar 

  7. Niechwiej-Szwedo E, Inness EL, Howe JA et al (2007) Changes in gait variability during different challenges to mobility in patients with traumatic brain injury. Gait Posture 25(1):70–77

    Article  PubMed  CAS  Google Scholar 

  8. Wilson DJ, Powell M, Gorham JL et al (2006) Ambulation training with and without partial weightbearing after traumatic brain injury: Results of a randomized, controlled trial. Am J Phys Med Rehabil 85:68–74

    Article  PubMed  Google Scholar 

  9. Irdesel J, Aydiner SB, Akgoz S (2007) Rehabilitation outcome after traumatic brain injury. Neurocirugía 18:5–15

    Article  PubMed  CAS  Google Scholar 

  10. Khan F, Baguley IJ, Cameron ID (2003) Rehabilitation after traumatic brain injury. Med J Aust 178:290–295

    PubMed  Google Scholar 

  11. Hesse S, Schmidt H, Werner C et al (2003) Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr Opin Neurol 16:705–710

    Article  PubMed  Google Scholar 

  12. Meyer Heim A, Borggraefe I, Ammann-Reiffer C et al (2007) Feasibility of roboticassisted locomotor training in children with central gait impairment. Dev Med Child Neurol 49:900–906

    Article  PubMed  CAS  Google Scholar 

  13. Neumanna M, Wang Y, Kim S et al (2009) Assessing gait impairment following experimental traumatic brain injury in mice. J Neurosci Methods 176:34–44

    Article  Google Scholar 

  14. Katz-Leurer M, Rotem H, Lewitus H et al (2008) Relationship between balance abilities and gait characteristics in children with post-traumatic brain injury. Brain Inj 22(2):153–159

    Article  PubMed  Google Scholar 

  15. Frost SB, Barbay S, Friel KM et al (2003) Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. J Neurophysiol 89(6):3205–3214

    Article  PubMed  CAS  Google Scholar 

  16. Bütefisch CM (2006) Neurobiological bases of rehabilitation. Neurol Sci 27:18–23

    Article  Google Scholar 

  17. Nudo RJ, Wise BM, SiFuentes F et al (1996) Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272:1791–1794

    Article  PubMed  CAS  Google Scholar 

  18. Wiese H, Stude P, Nebela K et al (2004) Impaired movement-related potentials in acute frontal traumatic brain injury. Clin Neurophysiol 115:289–298

    Article  PubMed  Google Scholar 

  19. Avramescu S, Timofeev I (2008) Synaptic strength modulation after cortical trauma: a role in epileptogenesis. J Neurosci 28(27):6760–6772

    Article  PubMed  CAS  Google Scholar 

  20. Marshall RS, Perera GM, Lazar RM et al (2000) Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 31:656–661

    Article  PubMed  CAS  Google Scholar 

  21. Feydy A, Carlier R, Roby-Brami A et al (2002) Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke 33:1610–1617

    Article  PubMed  CAS  Google Scholar 

  22. Robertson IH, Murre JM (1999) Rehabiliation of brain damage: brain plasticity and principles of guided recovery. Psychol Bull 125:544–575

    Article  PubMed  CAS  Google Scholar 

  23. Schallert T, Leasure JL, Kolb B (2000) Experience-associated structural events, subependymal cellular poliferative activity and functional recovery after injury to the central nervous system. J. Cereb Blood Flow Metab 20:1513–1528

    Article  PubMed  CAS  Google Scholar 

  24. Stuss DT, Knight RT (2002) Principles of frontal lobe function. Oxford University Press, England

    Book  Google Scholar 

  25. Garavan H, Kelley D, Rosen A et al (2000) Practice related functional activation changes in a working memory task. Microsc Res Tech 51:54–63

    Article  PubMed  CAS  Google Scholar 

  26. Poldrack RA (2000) Imaging brain plasticity: conceptual and methodological tissues: a theoretical review. Neuroimage 12:1–13

    Article  PubMed  CAS  Google Scholar 

  27. You SH, Jang SH, Kim Y-H et al (2005) Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy. Dev Med Child Neurol 47:628–635

    PubMed  Google Scholar 

  28. Jenkins IH, Brooks DJ, Nixon PD et al (1994) Motor sequence learning: a study with positron emission tomography. J Neurosci 14:3775–3790

    PubMed  CAS  Google Scholar 

  29. Saywell N, Taylor D (2008) The role of the cerebellum in procedural learning—are there implications for physiotherapists’ clinical practice? Physiother Theory Pract 24(5):321–328

    Article  PubMed  Google Scholar 

  30. Kim YH, Park JW, Ko MH et al (2004) Plastic changes of motor network after constraint-induced movement therapy. Yonsei Med J 45:241–246

    PubMed  Google Scholar 

  31. Celnik PA, Cohen LG (2004) Modulation of motor function and cortical plasticity in health and disease. Restor Neurol Neurosci 22:261–268

    PubMed  Google Scholar 

  32. Foltys H, Krings T, Meister IG et al (2003) Motor representation in patients rapidly recovering after stroke: a functional magnetic resonance imaging and transcranial magnetic stimulation study. Clin Neurophysiol 114:2404–2415

    Article  PubMed  Google Scholar 

  33. Liepert J, Bauder H, Miltner WH et al (2000) Treatment-induced cortical reorganization after stroke in humans. Stroke 31:1210–1216

    Article  PubMed  CAS  Google Scholar 

  34. Mani TM, Miller LS, Yanasak N et al (2007) Evaluation of changes in motor and visual functional activation over time following moderate-to-severe brain injury. Brain Inj 21(11):1155–1163

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from the Alβan Programme (European Union Programme of High Level Scholarships for Latin America).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. P. S. Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, F.P.S., Lima, M.O., Leon, D. et al. fMRI of the sensorimotor cortex in patients with traumatic brain injury after intensive rehabilitation. Neurol Sci 32, 633–639 (2011). https://doi.org/10.1007/s10072-011-0604-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-011-0604-6

Keywords

Navigation