Skip to main content
Log in

Expression of locus coeruleus mineralocorticoid receptor and glucocorticoid receptor in rats under single-prolonged stress

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The pathogenesis of the post-traumatic stress disorder (PTSD) may involve dysfunction of several brain structures, such as the amygdala, locus coeruleus, hippocampus, noradrenergic system as well as the hypothalamic–pituitary–adrenal (HPA) axis. The cortisol and locus coeruleus dysfunction may affect the secretion of corticosterone. The present study was designed to examine the expression of mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the locus coeruleus in the rats treated with single-prolonged stress (SPS). The results showed that the expression of MR had a sharp decline on day 1, but gradually increased on days 4, 7, 14, and 28. The expression of GR gradually increased on days 1, 4, and 7, but decreased on days 14 and 28, respectively.MR and GR in the locus coeruleus may have a role in the development of long-term persistent neuropsychological sequelae in PTSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lanius RA, Vermetten E, Loewenstein RJ, Brand B, Schmahl C, Bremner JD, Spiegel D (2010) Emotion modulation in PTSD: clinical and neurobiological evidence for a dissociative subtype. Am J Psychiatry 167:640–647

    Article  PubMed  Google Scholar 

  2. Zhang L, Li H, SU TP et al (2008) p11 is up-regulated in the forebrain of stressed rats by glucocorticoid acting via two specific glucocorticoid response elements in the p11 promoter. Neuroscience 153:1126–1134

    Article  PubMed  CAS  Google Scholar 

  3. Dickstein BD, Suvak M, Litz BT, Adler AB (2010) Heterogeneity in the course of posttraumatic stress disorder: trajectories of symptomatology. J Trauma Stress 23:331–339

    PubMed  Google Scholar 

  4. Pervanidou P, Chrousos GP (2010) Neuroendocrinology of post-traumatic stress disorder. Prog Brain Res 182:149–160

    Article  PubMed  CAS  Google Scholar 

  5. Dikanović M, Kadojić D, Demarin V et al (2009) The effect of stress hormones on cerebral hemodynamics in patients with chronic posttraumatic stress disorder. Acta Clin Croat 48:405–411

    PubMed  Google Scholar 

  6. Witteveen AB, Huizink AC, Slottje P, Bramsen I, Smid T, van der Ploeg HM (2010) Associations of cortisol with posttraumatic stress symptoms and negative life events: a study of police officers and firefighters. Psychoneuroendocrinology 35:1113–1118

    Article  PubMed  CAS  Google Scholar 

  7. Yamamoto S, Morinobu S, Takei S, Fuchikami M, Matsuki A, Yamawaki S, Liberzon I (2009) Single prolonged stress: toward an animal model of posttraumatic stress disorder. Depress Anxiety 26:1110–1117

    Article  PubMed  Google Scholar 

  8. Bauer ME, Wieck A, Lopes RP, Teixeira AL, Grassi-Oliveira R (2010) Interplay between neuroimmunoendocrine systems during post-traumatic stress disorder: a minireview. Neuroimmunomodulation 17:192–195

    Article  PubMed  CAS  Google Scholar 

  9. Krystal JH, Neumeister A (2009) Noradrenergic and serotonergic mechanisms in the neurobiology of posttraumatic stress disorder and resilience. Brain Res 1293:13–23

    Article  PubMed  CAS  Google Scholar 

  10. Khozhenko EV (2008) Pain syndrome and neuroendocrine disorders in posttraumatic stress disorder. Voen Med Zh 329:30–34

    PubMed  CAS  Google Scholar 

  11. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders (1994) DSM-IV, 4th edn. American Psychiatric Press, Washington

    Google Scholar 

  12. Foa EB, Zinbarg R, Rothbaum BO (1992) Uncontrollability and unpredictability in post-traumatic stress disorder: an animal model. Psychol Bull 112:218–238

    Article  PubMed  CAS  Google Scholar 

  13. Koolhaas JM, De Boer SF, De Rutter AJ, Meerlo P, Sgoifo A (1997) Social stress in rats and mice. Acta Physiol Scand Suppl 640:69–72

    PubMed  CAS  Google Scholar 

  14. Adamec RE, Blundell J, Burton P (2006) Relationship of the predatory attack experience to neural plasticity, pCREB expression and neuroendocrine response. Neurosci Biobehav Rev 30:356–375

    Article  PubMed  CAS  Google Scholar 

  15. Yehuda R, Southwick SM, Krystal JH, Bremner D, Charney DS, Mason JW (1993) Enhanced suppression of cortisol following dexamethasone administration in posttraumatic stress disorder. Am J Psychiatry 150:83–86

    PubMed  CAS  Google Scholar 

  16. Stein MB, Yehuda R, Koverola C, Hanna C (1997) Enhanced dexamethasone suppression of plasma cortisol in adult women traumatized by childhood sexual abuse. Biol Psychiatry 42:680–686

    Article  PubMed  CAS  Google Scholar 

  17. Liberzon I, Krstov M, Young EA (1997) Stress–restress: effects on ACTH and fast feedback. Psychoneuroendocrinology 22:443–453

    Article  PubMed  CAS  Google Scholar 

  18. Zhe Du, Fang Han, Yuxiu Shi (2008) Expressions of hippocampal mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the single-prolonged stress-rats. Acta Histochem Cytochem 41:89–95

    Article  PubMed  CAS  Google Scholar 

  19. Kozlovsky N, Matar MA, Kaplan Z, Zohar J, Cohen H (2009) A distinct pattern of intracellular glucocorticoid-related responses is associated with extreme behavioral response to stress in an animal model of post-traumatic stress disorder. Eur Neuropsychopharmacol 19:759–771

    Article  PubMed  CAS  Google Scholar 

  20. Ballard PA, Tetrud JW, Langston JW (1985) Permanent human parkinsonism due to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP): seven cases. Neurology 35:949–956

    PubMed  CAS  Google Scholar 

  21. Czyrak A, Chocyk A (2001) Search for the presence of glucocorticoid receptors in dopaminergic neurons of rat ventral tegmental area and substantia nigra. Pol J Pharmacol 53:681–684

    PubMed  CAS  Google Scholar 

  22. Herman JP, Adams D, Prewitt C (1995) Regulatory changes in neuroendocrine stress-integrative circuitry produced by a variable stress paradigm. Neuroendocrinology 61:180–190

    Article  PubMed  CAS  Google Scholar 

  23. Makino S, Smith MA, Gold PW (1995) Increased expression of corticoropin-releasing hormone and vasopressin messenger ribonucleic acid (mRNA) in the hypothalamic paraventricular nucleus during repeated stress: association with reduction in glucocorticoid receptor mRNA levels. Endocrinology 136:3299–3309

    Article  PubMed  CAS  Google Scholar 

  24. Loy R, Koziell DA, Lindsey JD, Moore RY (1980) Noradrenergic innervation of the adult rat hippocampal formation. J Comp Neurol 189:699–710

    Article  PubMed  CAS  Google Scholar 

  25. Cui H, Sakamoto H, Higashi S, Kawata M (2008) Effects of single-prolonged stress on neurons and their afferent inputs in the amygdala. Neuroscience 152:703–712

    Article  PubMed  CAS  Google Scholar 

  26. Rogalska J (2010) Mineralocorticoid and glucocorticoid receptors in hippocampus: their impact on neurons survival and behavioral impairment after neonatal brain injury. Vitam Horm 82:391–419

    Article  PubMed  CAS  Google Scholar 

  27. Gass P, Reichardt HM, Strekalova T, Henn F, Tronche F (2001) Mice with targeted mutations of glucocorticoid and mineralocorticoid receptors: models for depression and anxiety? Physiol Behav 73:811–825

    Article  PubMed  CAS  Google Scholar 

  28. Adamec R, Muir C, Grimes M, Pearcey K (2007) Involvement of noradrenergic and corticoid receptors in the consolidation of the lasting anxiogenic effects of predator stress. Behav Brain Res 179:192–207

    Article  PubMed  CAS  Google Scholar 

  29. Kellner M, Baker DG, Yassouridis A, Bettinger S, Otte C, Naber D, Wiedemann K (2002) Mineralocorticoid receptor function in patients with posttraumatic stress disorder. Am J Psychiatry 159:1938–1940

    Article  PubMed  Google Scholar 

  30. Liberzon I, López JF, Flagel SB, Vázquez DM, Young EA (1999) Differential regulation of hippocampal glucocorticoid receptors mRNA and fast feedback: relevance to posttraumatic stress disorder. J Neuroendocrinol 11:11–17

    Article  PubMed  CAS  Google Scholar 

  31. The Ministry of Science and Technology of the People’s Republic of China (2006) Guidance suggestions for the care and use of laboratory animals

  32. Wang W, Liu Y, Zheng H et al (2008) A modified single-prolonged stress model for post-traumatic stress disorder. Neurosci Lett 441:237–241

    Article  PubMed  CAS  Google Scholar 

  33. Jobson L (2009) Drawing current posttraumatic stress disorder models into the cultural sphere: the development of the ‘threat to the conceptual self’ model. Clin Psychol Rev 29:368–381

    Article  PubMed  Google Scholar 

  34. Cohen H, Matar MA, Buskila D, Kaplan Z, Zohar J (2008) Early post-stressor intervention with high-dose corticosterone attenuates posttraumatic stress response in an animal model of posttraumatic stress disorder. Biol Psychiatry 64:708–717

    Article  PubMed  CAS  Google Scholar 

  35. Jovanovic T, Norrholm SD, Blanding NQ et al (2010) Fear potentiation is associated with hypothalamic-pituitary-adrenal axis function in PTSD. Psychoneuroendocrinology 35:846–857

    Article  PubMed  CAS  Google Scholar 

  36. Handwerger K (2009) Differential patterns of HPA activity and reactivity in adult posttraumatic stress disorder and major depressive disorder. Harv Rev Psychiatry 17:184–205

    Article  PubMed  Google Scholar 

  37. Rasmusson AM, Vythilingam M, Morgan CA 3rd (2003) The neuroendocrinology of posttraumatic stress disorder: new directions. CNS Spectr 8:651–657

    PubMed  Google Scholar 

  38. Ehlert U, Wagner D, Heinrichs M, Heim C (1999) Psychobiological aspects of posttraumatic stress disorder. Nervenarzt 70:773–779

    Article  PubMed  CAS  Google Scholar 

  39. Ding J, Han F, Shi Y (2010) Single-prolonged stress induces apoptosis in the amygdala in a rat model of post-traumatic stress disorder. J Psychiatr Res 44:48–55

    Article  PubMed  Google Scholar 

  40. Kimble M, Kaufman M (2004) Clinical correlates of neurological change in posttraumatic stress disorder: an overview of critical systems. Psychiatr Clin North Am 27:49–65

    Article  PubMed  Google Scholar 

  41. Blaeser F, Sanders MJ, Truong N et al (2006) Long-term memory deficits in Pavlovian fear conditioning in Ca2+/calmodulin kinase kinase alpha-deficient mice. Mol Cell Biol 26:9105–9115

    Article  PubMed  CAS  Google Scholar 

  42. Berardelli R, Karamouzis I, Marinazzo E et al (2010) Effect of acute and prolonged mineralocorticoid receptor blockade on spontaneous and stimulated hypothalamic-pituitary-adrenal axis in humans. Eur J Endocrinol 162:1067–1074

    Article  PubMed  CAS  Google Scholar 

  43. Oitzl MS, van Haarst AD, Sutanto W, de Kloet ER (1995) Corticosterone, brain mineralocorticoid receptors (MRs) and the activity of the hypothalamic-pituitary-adrenal (HPA) axis: the Lewis rat as an example of increased central MR capacity and a hyporesponsive HPA axis. Psychoneuroendocrinology 20:655–675

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Natural Science Foundation of China (NO. 30600341). The authors are thankful for all the help from the China Medical University Experiment Center for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiu Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Han, F. & Shi, Y. Expression of locus coeruleus mineralocorticoid receptor and glucocorticoid receptor in rats under single-prolonged stress. Neurol Sci 32, 625–631 (2011). https://doi.org/10.1007/s10072-011-0597-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-011-0597-1

Keywords

Navigation