Skip to main content

Advertisement

Log in

The many ways to frontotemporal degeneration and beyond

  • Invited Review
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Frontotemporal degeneration (FTD) is the most common cause of dementia after Alzheimer’s disease. To date, it has been addressed with intensive and intense research.

Objective

To report on the most recent findings in the biology of FTD.

Methods

Review of FTD literature.

Results

FTD presents with many phenotypes that span from prefrontal syndromes to lower motor neuron disease passing through temporal, partietal and extrapyramidal syndromes. FTD includes the frontotemporal lobar atrophies clinically characterised by abnormal behaviour, progressive aphasia or semantic dementia, as well as corticobasal degeneration, progressive supranuclear palsy, progressive subcortical gliosis and FTD with motor neuron disease. The molecular classification of FTD can be traced following the immunocytochemical properties of the material accumulated in neuroectodermic cells. This procedure allows the separation of FTD with tau-positive inclusions from FTD with ubiquitin-positive inclusions, and from FTD with inclusions negative for both. Genetically, seven loci (chromosomes 3p, 9q and 17q24, one locus each; 9p and 17q21, two loci each) and four genes (MAPT, PRGN, VCP, CHMP2B) have been identified. Proteins involved are tau, progranulin, VCP, CHMP2B, Progranulin TDP43, ubiquitin and the intermediate neurofilament system. Neurodegeneration is most likely due to changes in cytoskeletal structure and in ubiquitindependent protein degradation activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker M, Mackenzie IR, Pickering-Brown SM et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919

    Article  PubMed  CAS  Google Scholar 

  2. Cruts M, Gijselinck I, van der Zee J et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–924

    Article  PubMed  CAS  Google Scholar 

  3. Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 214:130–133

    Article  CAS  Google Scholar 

  4. Arai T, Hasegawa M, Akiyama H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611

    Article  PubMed  CAS  Google Scholar 

  5. Neary D, Snowden JS, Gustafson L et al (1998) Frontotemporal lobar degeneration; a consensus on clinical diagnostic criteria. Neurology 51:1546–1554

    PubMed  CAS  Google Scholar 

  6. Kertesz A (2003) Pick complex: an integrative approach to frontotemporal dementia, primary progressive aphasia, corticobasal degeneration, and progressive supranuclear palsy. Neurologist 9:311–317

    Article  PubMed  Google Scholar 

  7. Pick A (1892) Über die Beziehungen der senilen Hirnatrophie zur Aphasie. Prager Med Wochenschr 17:165–167

    Google Scholar 

  8. Spatz H (1952) La maladie de Pick, les atrophies systématisées progressives et la sénescence cérébrale prématurée localisée. Proc First Int Congr Neuropathol, Vol 2, Rosenberg & Sellier, Torino, pp 375–406

    Google Scholar 

  9. Cairns NJ, Bigio EM, Mackenzie IR et al (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration; consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol (Berl) 114:5–22

    Article  Google Scholar 

  10. Mutations in MAPT. Alzheimer Disease & Frontotemporal Dementia Mutation Database, 10 September 2007, http://www.molgen.ua.ac.be/

  11. Bugiani O, Murrell JR, Giaccone G et al (1999) Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in Tau. J Neuropathol Exp Neurol 58:667–677

    PubMed  CAS  Google Scholar 

  12. Goedert M, Spillantini MG, Crowther RA et al (1999) Tau gene mutation in familial progressive subcortical gliosis. Nat Med 5:454–457

    Article  PubMed  CAS  Google Scholar 

  13. Wilhelmsen KC, Forman MS, Rosen HJ et al (2004) 17q-Linked frontotemporal dementia-amyotrophic lateral sclerosis without Tau mutations with tau and α-synuclein inclusions. Arch Neurol 61:398–406

    Article  PubMed  Google Scholar 

  14. Trojanowski JO (2002) Tauists, Baptists, Syners, Apostates, and new data. Ann Neurol 52:263–265

    Article  PubMed  Google Scholar 

  15. Spillantini MG, Goedert M, Crowther RA et al (1997) Familial multiple system tauopathy with presenile dementia: a disease with abundant neuronal and glial tau filaments. Proc Natl Acad Sci U S A 94:4113–4118

    Article  PubMed  CAS  Google Scholar 

  16. Knibb JA, Kips CM, Hodges JR (2006) Frontotemporal dementia. Curr Opin Neurol 19:565–571

    Article  PubMed  Google Scholar 

  17. Mackenzie IRA, Baker M, Pickering-Brown S et al (2006) The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain 129:3081–3090

    Article  PubMed  Google Scholar 

  18. Mutations in PGRN. Alzheimer Disease & Frontotemporal Dementia Mutation Database, 10 September 2007 http://www.molgen.ua.ac.be/

  19. Gass J, Cannon A, Mackenzie IR et al (2006) Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet 15:2988–3001

    Article  PubMed  CAS  Google Scholar 

  20. Snowden JS, Pickering-Brown SM, Mackenzie IR et al (2006) Progranulin gene mutations associated with frontotemporal dementia and progressive non-fluent aphasia. Brain 129:3091–3102

    Article  PubMed  CAS  Google Scholar 

  21. Masellis M, Momeni P, Meschino W et al (2006) Novel splicing mutations in the progranulin gene causing familial corticobasal syndrome. Brain 129:2808–2810

    Article  Google Scholar 

  22. Spina S, Murrell JR, Huey ED et al (2007) Clinicopathologic features of frontotemporal dementia with Progranulin sequence variation. Neurology 68:1–8

    Article  Google Scholar 

  23. Pickering-Brown SM, Baker M, Gass J et al (2006) Mutations in progranulin explain atypical phenotypes with variants in MAPT. Brain 129:3124–3126

    Article  PubMed  Google Scholar 

  24. Neumann M, Kwong LK, Truax AC et al (2007) TDP-43-positive white matter pathology in frontotemporal lobar degeneration with ubiquitin-positive inclusions. J Neuropathol Exp Neurol 66:177–183

    Article  PubMed  CAS  Google Scholar 

  25. Lipton AM, White CL, Bigio EH (2004) Frontotemporal lobar degeneration with motor neuron disease-type inclusions predominates in 76 cases of frontotemporal degeneration. Acta Neuropathol (Berl) 108:379–385

    Article  Google Scholar 

  26. Tan CF, Eguchi H, Tagawa A et al (2007) TDP-43 immunoreactivity in neuronal inclusions in familial amyotrophic lateral sclerosis with or without SOD1 gene mutation. Acta Neuropathol (Berl) 113:535–542

    Article  CAS  Google Scholar 

  27. Mackenzie IR, Bigio EH, Ince PG et al (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61:427–434

    Article  PubMed  CAS  Google Scholar 

  28. Kwong LK, Neumann M, Sampathu DM et al (2007) TDP-43 proteinopathy: the neuropathology underlying major forms of sporadic and familial frontotemporal lobar degeneration and motor neuron disease. Acta Neuropathol (Berl) 114:63–70

    Article  CAS  Google Scholar 

  29. Rollinson S, Snowden JS, Neary D et al (2007) TDP-43 gene in frontotemporal lobar degeneration. Neurosci Lett 419:1–4

    Article  PubMed  CAS  Google Scholar 

  30. Buratti E, Brindisi A, Pagani F, Baralle FE (2004) Nuclear factor TDP-43 binds to the polymorphic TG repeats in CFTR intron 8 and causes skipping of exon 9: A functional link with disease penetrance. Am J Hum Genet 74:1322–1325

    Article  PubMed  CAS  Google Scholar 

  31. Neumann M, Mackenzie IR, Cairns NJ et al (2007) TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. J Neuropathol Exp Neurol 66:152–157

    PubMed  Google Scholar 

  32. Morita M, Al-Chalabi A, Andersen PM et al (2006) A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology 66:839–844

    Article  PubMed  CAS  Google Scholar 

  33. Hosler BA, Siddique T, Sapp PC et al (2000) Linkage of amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21-q22. JAMA 284:1664–1669

    Article  PubMed  CAS  Google Scholar 

  34. Skibinski G, Parkinson NJ, Brown JM et al (2005) Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet 37:806–808

    Article  PubMed  CAS  Google Scholar 

  35. Mutations in CHMP2B. Alzheimer Disease & Frontotemporal Dementia Mutation Database, 10 September 2007 http://www.molgen.ua.ac.be/

  36. Parkinson N, Ince PG, Smith MO et al (2006) ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67:1074–1077

    Article  PubMed  CAS  Google Scholar 

  37. Cairns NJ, Perry RH, Jaros E et al (2003) Patients with a novel neurofilamentopathy: dementia with neurofilament inclusions. Neurosci Lett 341:177–180

    Article  PubMed  CAS  Google Scholar 

  38. Cairns NJ, Zhukareva V, Uryu K et al (2004) ?-internexin is present in the pathological inclusion of neuronal intermediate filament inclusion disease. Am J Pathol 164:2153–2161

    PubMed  CAS  Google Scholar 

  39. Axelsson R, Roytta M, Sourander P et al (1984) Hereditary diffuse leukoencephalopathy with spheroids. Acta Psychiatr Scand 314[Suppl]:7–65

    Google Scholar 

  40. Mascalchi M, Gavazzi C, Morbin M et al (2006) CT and MRI imaging of neuroaxonal leukodystrophy presenting as early-onset frontal dementia. Am J Neuroradiol 27:1037–1039

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Bugiani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugiani, O. The many ways to frontotemporal degeneration and beyond. Neurol Sci 28, 241–244 (2007). https://doi.org/10.1007/s10072-007-0829-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-007-0829-6

Key words

Navigation