Abstract
Detecting and identifying predators quickly is key to survival. According to the Snake Detection Theory (SDT), snakes have been a substantive threat to primates for millions of years, so that dedicated visual skills were tuned to detect snakes in early primates. Past experiments confronted the SDT by measuring how fast primate subjects detected snake pictures among non-dangerous distractors (e.g., flowers), but did not include pictures of primates’ other predators, such as carnivorans, raptors, and crocodilians. Here, we examined the detection abilities of N = 19 Tonkean macaques (Macaca tonkeana) and N = 6 rhesus macaques (Macaca mulatta) to spot different predators. By implementing an oddity task protocol, we recorded success rates and reaction times to locate a deviant picture among four pictures over more than 400,000 test trials. Pictures depicted a predator, a non-predator animal, or a simple geometric shape. The first task consisted of detecting a deviant picture among identical distractor pictures (discrimination) and the second task was designed to evaluate detection abilities of a deviant picture among different distractor pictures (categorization). The macaques detected pictures of geometric shapes better and faster than pictures of animals, and were better and faster at discriminating than categorizing. The macaques did not detect snakes better or faster than other animal categories. Overall, these results suggest that pictures of snakes do not capture visual attention more than other predators, questioning previous findings in favor of the SDT.
Similar content being viewed by others
Data and code availability
The datasets analyzed during the current study as well as the R scripts are available from the corresponding author on request.
References
Amo L, Visser ME, van Oers K (2011) Smelling out predators is innate in birds. Ardea 99(2):177–184. https://doi.org/10.5253/078.099.0207
Ardiantiono B, Henkanaththegedara SM, Sideleau B, Sheherazade IA, Anwar Y, Haidir IA, Amarasinghe AAT (2023) Integrating social and ecological information to identify high-risk areas of human-crocodile conflict in the Indonesian Archipelago. Biol Conserv 280:109965. https://doi.org/10.1016/j.biocon.2023.109965
Ashepet M-G, Dahdouh-Guebas F, Redpath S, Pooley S, Huge J (2023) The state and perceptions of human-crocodile interactions around Murchison falls conservation area, Uganda. Hum Dimens Wildlife. https://doi.org/10.1080/10871209.2023.2212692
Ballesta S, Sadoughi B, Miss F, Whitehouse J, Aguenounon G, Meunier H (2021) Assessing the reliability of an automated method for measuring dominance hierarchy in non-human primates. Primates 62(4):595–607. https://doi.org/10.1007/s10329-021-00909-7
Beligiannis N, Hermus M, Gootjes L, Van Strien JW (2022) Both low and high spatial frequencies drive the early posterior negativity in response to snake stimuli. Neuropsychologia 177:108403. https://doi.org/10.1016/j.neuropsychologia.2022.108403
Bertels J, de Heering A, Bourguignon M, Cleeremans A, Destrebecqz A (2023) What determines the neural response to snakes in the infant brain? A systematic comparison of color and grayscale stimuli. Front Psychol 14:1027872. https://doi.org/10.3389/fpsyg.2023.1027872
Berthet M, Mesbahi G, Pajot A, Cäsar C, Neumann C, Zuberbühler K (2019) Titi monkeys combine alarm calls to create probabilistic meaning. Sci Adv 5(5):eaav3991. https://doi.org/10.1126/sciadv.aav3991
Bovet D, Vauclair J (2001) Judgment of conceptual identity in monkeys. Psychon Bull Rev 8(3):470–475. https://doi.org/10.3758/BF03196181
Bürkner P-C (2017) brms: an R package for Bayesian multilevel models using stan. J Stat Soft. 80:1–28. https://doi.org/10.18637/jss.v080.i01
Burns-Cusato M, Glueck AC, Merchak AR, Palmer CL, Rieskamp JD, Duggan IS, Hinds RT, Cusato B (2016) Threats from the past: Barbados green monkeys (Chlorocebus sabaeus) fear leopards after centuries of isolation. Behav Proc 126:1–11. https://doi.org/10.1016/j.beproc.2016.02.011
Calvillo DP, Hawkins WC (2016) Animate objects are detected more frequently than inanimate objects in inattentional blindness tasks independently of threat. J Gen Psychol 143(2):101–115. https://doi.org/10.1080/00221309.2016.1163249
Cartmill M (1974) Rethinking primate origins. Science 184(4135):436–443
Coelho CM, Suttiwan P, Faiz AM, Ferreira-Santos F, Zsido AN (2019) Are humans prepared to detect, fear, and avoid snakes? The mismatch between laboratory and ecological evidence. Front Psychol 10:2094. https://doi.org/10.3389/fpsyg.2019.02094
Coss RG, Ramakrishnan U, Schank J (2005) Recognition of partially concealed leopards by wild bonnet macaques (Macaca radiata): the role of the spotted coat. Behav Proc 68(2):145–163. https://doi.org/10.1016/j.beproc.2004.12.004
Curlis JD, Macklem DC, Davis R, Cox CL (2016) Sex-specific antipredator response to auditory cues in the black spiny-tailed iguana. J Zool 299(1):68–74. https://doi.org/10.1111/jzo.12326
Dal Ben R (2021) Luminance control of colorful images [Logiciel]. OSF. https://osf.io/auzjy/. Accessed 15 Mar 2022
de Moraes PZ, Diniz P, Spyrides MHC, Pessoa DMA (2021) The effect of pelage, background, and distance on predator detection and the evolution of primate color vision. Am J Primatol 83(2):e23230. https://doi.org/10.1002/ajp.23230
Denzer W (2018) Commentary: Itsy Bitsy Spider…: infants react with increased arousal to spiders and snakes. Front Psychol 9:393. https://doi.org/10.3389/fpsyg.2018.00393
Deshpande A, van de Waal E, Zuberbühler K (2023) Context-dependent alarm responses in wild vervet monkeys. Anim Cogn. https://doi.org/10.1007/s10071-023-01767-0
Dinh HT, Meng Y, Matsumoto J, Setogawa T, Nishimaru H, Nishijo H (2022) Fast detection of snakes and emotional faces in the Macaque Amygdala. Front Behav Neurosci. https://doi.org/10.3389/fnbeh.2022.839123
Dinh HT, Nishimaru H, Matsumoto J, Takamura Y, Le QV, Hori E, Maior RS, Tomaz C, Tran AH, Ono T, Nishijo H (2018) Superior neuronal detection of snakes and conspecific faces in the macaque medial prefrontal cortex. Cereb Cortex 28(6):2131–2145. https://doi.org/10.1093/cercor/bhx118
Etting SF, Isbell LA (2014) Rhesus Macaques (Macaca mulatta) use posture to assess level of threat from snakes. Ethology 120(12):1177–1184. https://doi.org/10.1111/eth.12293
Fabre-Thorpe M (2003) Visual categorization: accessing abstraction in non–human primates. Philos Trans R Soc Lond Ser B Biol Sci. 358(1435):1215–1223. https://doi.org/10.1098/rstb.2003.1310
Falótico T (2023) Vertebrate predation and tool-aided capture of prey by savannah wild capuchin monkeys (Sapajus libidinosus). Int J Primatol 44(1):9–20. https://doi.org/10.1007/s10764-022-00320-z
Falótico T, Verderane MP, Mendonça-Furtado O, Spagnoletti N, Ottoni EB, Visalberghi E, Izar P (2018) Food or threat? Wild capuchin monkeys (Sapajus libidinosus) as both predators and prey of snakes. Primates 59(1):99–106. https://doi.org/10.1007/s10329-017-0631-x
Fančovičová J, Prokop P, Szikhart M, Pazda A (2020) Snake coloration does not influence children’s detection time. Hum Dimens Wildl 25(5):489–497. https://doi.org/10.1080/10871209.2020.1758252
Fischer J, Hammerschmidt K, Cheney DL, Seyfarth RM (2001) Acoustic features of female chacma baboon barks. Ethology 107(1):33–54. https://doi.org/10.1111/j.1439-0310.2001.00630.x
Fizet J, Rimele A, Pebayle T, Cassel J-C, Kelche C, Meunier H (2017) An autonomous, automated and mobile device to concurrently assess several cognitive functions in group-living non-human primates. Neurobiol Learn Mem 145:45–58. https://doi.org/10.1016/j.nlm.2017.07.013
Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2002) Visual categorization and the primate prefrontal cortex: neurophysiology and behavior. J Neurophysiol 88(2):929–941. https://doi.org/10.1152/jn.2002.88.2.929
García-Grajales J, Buenrostro-Silva A (2019) Assessment of human–crocodile conflict in Mexico: patterns, trends and hotspots areas. Mar Freshw Res 70(5):708–720. https://doi.org/10.1071/MF18150
Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457–472
Govind SK, Jayson EA (2022) Attacks by wild Boar Sus scrofa on humans in Central Kerala India. J Bombay Nat History Soc (JBNHS). https://doi.org/10.17087/jbnhs/2022/v119/151234
Grassini S, Valli K, Souchet J, Aubret F, Segurini GV, Revonsuo A, Koivisto M (2019) Pattern matters: snakes exhibiting triangular and diamond-shaped skin patterns modulate electrophysiological activity in human visual cortex. Neuropsychologia 131:62–72. https://doi.org/10.1016/j.neuropsychologia.2019.05.024
Grigg G, Kirshner DS (2015) Biology and evolution of crocodylians. Csiro Publishing, Clayton
Gunduz A, Turedi S, Nuhoglu I, Kalkan A, Turkmen S (2007) Wild Boar Attacks. Wilderness Environ Med 18(2):117–119. https://doi.org/10.1580/06-WEME-CR-033R1.1
Hayes SL, Snowdon CT (1990) Predator recognition in cotton-top tamarins (Saguinus oedipus). Am J Primatol 20(4):283–291. https://doi.org/10.1002/ajp.1350200404
Hernández Tienda C, Beltrán Francés V, Majolo B, Romero T, Illa Maulany R, Oka Ngakan P, Amici F (2021) Reaction to snakes in wild moor Macaques (Macaca maura). Int J Primatol 42(4):528–532. https://doi.org/10.1007/s10764-021-00230-6
Herrnstein RJ (1990) Levels of stimulus control: a functional approach. Cognition 37(1):133–166. https://doi.org/10.1016/0010-0277(90)90021-B
Hoehl S, Pauen S (2017) Do infants associate spiders and snakes with fearful facial expressions? Evol Hum Behav 38(3):404–413. https://doi.org/10.1016/j.evolhumbehav.2016.12.001
Hopper LM, Allritz M, Egelkamp CL, Huskisson SM, Jacobson SL, Leinwand JG, Ross SR (2021) A comparative perspective on three primate species’ responses to a pictorial emotional Stroop task. Animals 11(3):3. https://doi.org/10.3390/ani11030588
Isbell LA (2006) Snakes as agents of evolutionary change in primate brains. J Hum Evol 51(1):1–35. https://doi.org/10.1016/j.jhevol.2005.12.012
Isbell LA (2009) The fruit, the tree, and the serpent: why we see so well. Harvard University Press, Harvard
Isbell L, Etting S (2016) Scales drive detection, attention, and memory of snakes in wild vervet monkeys (Chlorocebus pygerythrus). Primates. https://doi.org/10.1007/s10329-016-0562-y
Isomura T, Ogawa S, Shibasaki M, Masataka N (2015) Delayed disengagement of attention from snakes in children with autism. Front Psychol. https://doi.org/10.3389/fpsyg.2015.00241
Jensen CH, Caine NG (2021) Preferential snake detection in a simulated ecological experiment. Am J Phys Anthropol 175(4):895–904. https://doi.org/10.1002/ajpa.24224
Joly M, Micheletta J, De Marco A, Langermans JA, Sterck EHM, Waller BM (2017) Comparing physical and social cognitive skills in macaque species with different degrees of social tolerance. Proc R Soc b Biol Sci 284(1862):20162738. https://doi.org/10.1098/rspb.2016.2738
Julliot C (1994) Predation of a young spider monkey (Ateles paniscus) by a crested eagle (Morphnus guianensis). Folia Primatol 63:75–77. https://doi.org/10.1159/000156794
Kannan K, Galizia CG, Nouvian M (2022) Olfactory strategies in the defensive behaviour of insects. Insects 13(5):470. https://doi.org/10.3390/insects13050470
Kawai N (2019) The fear of snakes: evolutionary and psychobiological perspectives on our innate fear. Springer, Singapore. https://doi.org/10.1007/978-981-13-7530-9
Kawai N, Koda H (2016) Japanese monkeys (Macaca fuscata) quickly detect snakes but not spiders: evolutionary origins of fear-relevant animals. J Comp Psychol 130(3):299–303. https://doi.org/10.1037/com0000032
Kawai N, Kubo K, Masataka N, Hayakawa S (2016) Conserved evolutionary history for quick detection of threatening faces. Anim Cogn 19(3):655–660. https://doi.org/10.1007/s10071-015-0949-y
Kawai N, Qiu H (2020) Humans detect snakes more accurately and quickly than other animals under natural visual scenes: a flicker paradigm study. Cogn Emot 34(3):614–620. https://doi.org/10.1080/02699931.2019.1657799
Kay M (2023) tidybayes: Tidy Data and Geoms for Bayesian Models (R package version 3.0.4) [Logiciel]. Zenodo. https://doi.org/10.5281/zenodo.7606324. Accessed 13 Apr 2023
Kemp C, Kaplan G (2012) Olfactory Cues Modify and Enhance Responses to Visual Cues in the Common Marmoset (‘Callithrix jacchus’). https://rune.une.edu.au/web/handle/1959.11/12529. Accessed 4 Apr 2022
Kempf E (2009) Patterns of water use in primates. Folia Primatol 80(4):275–294. https://doi.org/10.1159/000252586
Kirchhof J, Hammerschmidt K (2006) Functionally referential alarm calls in Tamarins (Saguinus fuscicollis and Saguinus mystax)—evidence from playback experiments. Ethology 112(4):346–354. https://doi.org/10.1111/j.1439-0310.2006.01165.x
Koba R, Izumi A (2006) Sex categorization of conspecific pictures in Japanese monkeys (Macaca fuscata). Anim Cogn 9(3):183–191. https://doi.org/10.1007/s10071-006-0020-0
Lau AR, Grote MN, Dufek ME, Franzetti TJ, Bales KL, Isbell LA (2021) Titi monkey neophobia and visual abilities allow for fast responses to novel stimuli. Sci Rep 11(1):2578. https://doi.org/10.1038/s41598-021-82116-4
Le QV, Isbell LA, Matsumoto J, Le VQ, Hori E, Tran AH, Maior RS, Tomaz C, Ono T, Nishijo H (2014) Monkey pulvinar neurons fire differentially to snake postures. PLoS ONE 9(12):e114258. https://doi.org/10.1371/journal.pone.0114258
Lipp O (2006) Of snakes and flowers: does preferential detection of pictures of fear-relevant animals in visual search reflect on fear-relevance? Emotion. 6:296–308. https://doi.org/10.1037/1528-3542.6.2.296
Lipp O, Derakshan N, Waters A, Logies S (2004) Snakes and cats in the flower bed: fast detection is not specific to pictures of fear-relevant animals. Emotion. 4:233–250. https://doi.org/10.1037/1528-3542.4.3.233
Masataka N, Hayakawa S, Kawai N (2010) Human young children as well as adults demonstrate ‘superior’ rapid snake detection when typical striking posture is displayed by the snake. PLoS ONE 5(11):e15122. https://doi.org/10.1371/journal.pone.0015122
McLellan CF, Scott-Samuel NE, Cuthill IC (2021) Birds learn to avoid aposematic prey by using the appearance of host plants. Curr Biol 31(23):5364-5369.e4. https://doi.org/10.1016/j.cub.2021.09.048
Mikhail A, Lewis JE, Yack JE (2018) What does a butterfly hear? Physiological characterization of auditory afferents in Morpho peleides (Nymphalidae). J Comp Physiol A 204(9):791–799. https://doi.org/10.1007/s00359-018-1280-2
Okano I, Midorikawa Y, Kushima N, Watanabe Y, Sugiyama T, Mitachi K, Shinohara K, Sawada T, Inagaki K (2018) Penetrating anorectal injury caused by a wild boar attack : a case report. Wilderness Environ Med 29(3):375–379. https://doi.org/10.1016/j.wem.2018.02.007
Pebayle T, Fizet J, Rimele A, Meunier H (2016) Multitask learning machine with dual RFID detection (Brevet FR1656699).
Pembury Smith MQR, Ruxton GD (2020) Camouflage in predators. Biol Rev 95(5):1325–1340. https://doi.org/10.1111/brv.12612
Penkunas MJ, Coss RG (2013a) A comparison of rural and urban Indian children’s visual detection of threatening and nonthreatening animals. Dev Sci 16(3):463–475. https://doi.org/10.1111/desc.12043
Penkunas MJ, Coss RG (2013b) Rapid detection of visually provocative animals by preschool children and adults. J Exp Child Psychol 114(4):522–536. https://doi.org/10.1016/j.jecp.2012.10.001
Pessoa DMA, Maia R, de Albuquerque Ajuz RC, De Moraes PZPMR, Spyrides MHC, Pessoa VF (2014) The adaptive value of primate color vision for predator detection. Am J Primatol 76(8):721–729. https://doi.org/10.1002/ajp.22264
Piep M, Radespiel U, Zimmermann E, Schmidt S, Siemers BM (2008) The sensory basis of prey detection in captive-born grey mouse lemurs, Microcebus Murinus. Animal Behaviour 75(3):871–878. https://doi.org/10.1016/j.anbehav.2007.07.008
R Core Team (2022) R: a language and environment for statistical computing. (4.0.2) [Logiciel]. R Foundation for Statistical Computing. http://www.R-project.org/. Accessed 8 Sept 2022
Raška J, Štys P, Exnerová A (2017) How variation in prey aposematic signals affects avoidance learning, generalization and memory of a salticid spider. Anim Behav 130:107–117. https://doi.org/10.1016/j.anbehav.2017.06.012
Rojas B, Valkonen J, Nokelainen O (2015) Aposematism. Curr Biol 25(9):R350–R351. https://doi.org/10.1016/j.cub.2015.02.015
Rouder JN (2005) Are unshifted distributional models appropriate for response time? Psychometrika 70(2):377–381. https://doi.org/10.1007/s11336-005-1297-7
RStudio Team (2022) RStudio: integrated development environment for R (2022.2.3.492) [Logiciel]. RStudio, PBC. http://www.rstudio.com/
Seyfarth RM, Cheney DL (1980) The ontogeny of vervet monkey alarm calling behavior: a preliminary report. Z Tierpsychol 54(1):37–56. https://doi.org/10.1111/j.1439-0310.1980.tb01062.x
Shearer DJ, Beilke EA (2023) Playing it by ear: gregarious sparrows recognize and respond to isolated wingbeat sounds and predator-based cues. Anim Cogn 26(2):357–367. https://doi.org/10.1007/s10071-022-01663-z
Shibasaki M, Kawai N (2009) Rapid detection of snakes by Japanese monkeys (Macaca fuscata): an evolutionarily predisposed visual system. J Comp Psychol 123(2):131–135. https://doi.org/10.1037/a0015095
Souchet J, Aubret F (2016) Revisiting the fear of snakes in children: the role of aposematic signalling. Sci Rep 6(1):37619. https://doi.org/10.1038/srep37619
Struhsaker T, Leakey M (1990) Prey selectivity by crowned hawk-eagles on monkeys in the Kibale Forest, Uganda. Behav Ecol Sociobiol 26:435–443. https://doi.org/10.1007/BF00170902
Summers K, Speed MP, Blount JD, Stuckert AMM (2015) Are aposematic signals honest? A review. J Evol Biol 28(9):1583–1599. https://doi.org/10.1111/jeb.12676
The GIMP Development Team. (2019). GIMP. Retrieved from https://www.gimp.org [Logiciel]. Accessed 29 Mar 2023
The MathWorks Inc (2022) MATLAB version : 9.13.0 (R2022b), Natick, Massachusetts : The MathWorks Inc. https://www.mathworks.com [Logiciel]. Accessed 29 Mar 2023
Valkonen JK, Nokelainen O, Mappes J (2011a) Antipredatory function of head shape for vipers and their mimics. PLoS ONE 6(7):e22272. https://doi.org/10.1371/journal.pone.0022272
Valkonen J, Niskanen M, Björklund M, Mappes J (2011b) Disruption or aposematism? Significance of dorsal zigzag pattern of European vipers. Evol Ecol 25(5):1047–1063. https://doi.org/10.1007/s10682-011-9463-0
Wagenmakers E-J, Brown S (2007) On the linear relation between the mean and the standard deviation of a response time distribution. Psychol Rev 114:830–841. https://doi.org/10.1037/0033-295X.114.3.830
Wagner CM, Bals JD, Byford GJ, Scott AM, Feder ME (2023) Olfactory sensitivity and threat-sensitive responses to alarm cue in an invasive fish. Biol Invasions. https://doi.org/10.1007/s10530-023-03092-6
Weiss L, Brandl P, Frynta D (2015) Fear reactions to snakes in naïve mouse lemurs and pig-tailed macaques. Primates 56(3):279–284. https://doi.org/10.1007/s10329-015-0473-3
Wheeler B (2010) Snakes ! The unified theory of everything about primates? Evol Anthropol 19(1):37–38. https://doi.org/10.1002/evan.20244
Wheeler B, Bradley BJ, Kamilar JM (2011) Predictors of orbital convergence in primates: a test of the snake detection hypothesis of primate evolution. J Hum Evol 61(3):233–242. https://doi.org/10.1016/j.jhevol.2011.03.007
White TE, Umbers KDL (2021) Meta-analytic evidence for quantitative honesty in aposematic signals. Proc R Soc b Biol Sci 288(1949):20210679. https://doi.org/10.1098/rspb.2021.0679
Wickham H (2023) modelr: modelling functions that work with the Pipe (R package version 0.1.11) [Logiciel]. https://CRAN.R-project.org/package=modelr. Accessed 13 Apr 2023
Willenbockel V, Sadr J, Fiset D, Horne GO, Gosselin F, Tanaka JW (2010) Controlling low-level image properties: the SHINE toolbox. Behav Res Methods 42(3):671–684. https://doi.org/10.3758/BRM.42.3.671
Yorzinski JL, Coss RG (2020) Animals in upright postures attract attention in humans. Evol Psychol Sci 6(1):30–37. https://doi.org/10.1007/s40806-019-00209-w
Yorzinski JL, Penkunas MJ, Platt ML, Coss RG (2014) Dangerous animals capture and maintain attention in humans. Evol Psychol 12(3):147470491401200320. https://doi.org/10.1177/147470491401200304
Yorzinski J, Tovar M, Coss R (2018) Forward-facing predators attract attention in humans (Homo sapiens). J Compar Psychol. https://doi.org/10.1037/com0000126
Zeller K, Garcia C, Maille A, Duboscq J, Morino L, Dezecache G, Bonnet X (2022) Primate-predator interactions : is there a mismatch between laboratory and ecological evidence? Int J Primatol. https://doi.org/10.1007/s10764-022-00331-w
Acknowledgements
The authors thank the Initiative Biodiversité, Évolution, Écologie, Société (IBEES), the Muséum national d'Histoire naturelle (MNHN), the Université de Strasbourg and the Centre de Primatologie de l’Université de Strasbourg – Silabe (www.silabe.com) for funding the research project, technical support and expert animal care. We are grateful to Christof Neumann for significant help with the data analysis and suggestions on the manuscript.
Funding
This work was financially supported by the Initiative Biodiversité, Évolution, Écologie, Société (France) and the Museum national d’Histoire naturelle (France) to Cécile Garcia and Karl Zeller, by the Université de Strasbourg (France) to Sébastien Ballesta and Hélène Meunier and by the Centre de Primatologie de l’Université de Strasbourg (France), Silabe to Adam Rimele.
Author information
Authors and Affiliations
Contributions
Original idea: KZ, CG, and SB. Conceptualization and writing of the first version of the manuscript: KZ. Collection and editing of stimuli: KZ. Coding of the cognitive task, data collection and data management: KZ, SB and AR. Statistical analyses: KZ. All authors contributed to the elaboration of the research questions and to the methodology. All authors contributed to writing and approved the submitted version.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no competing interests to declare that are relevant to the content of this article.
Ethical approval
Silabe’s (SBEA, https://silabe.com/) internal ethics committee reviewed the project and declared that the protocol had no negative impact on animals in the sense of Directive 2010/63/EU and therefore validated the implementation of the project. The decision was taken during the meeting archived under the name “SBEA 2022–03”. Silabe is authorized to house non-human primates (registration n°B6732636).
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zeller, K., Ballesta, S., Meunier, H. et al. Spot the odd one out: do snake pictures capture macaques’ attention more than other predators?. Anim Cogn 26, 1945–1958 (2023). https://doi.org/10.1007/s10071-023-01831-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10071-023-01831-9