Skip to main content
Log in

Manatee cognition in the wild: an exploration of the manatee mind and behavior through neuroanatomy, psychophysics, and field observations

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Cognition refers to the mechanisms for acquiring, processing, storing, and acting on information, all of which are critical to understanding the behavior of animals. These mechanisms are poorly known in manatees, especially how they are expressed in the wild. To expand our understanding of manatee cognition, we gathered information from behavioral experimentation in the laboratory, neuroanatomical research, controlled field studies, integrated laboratory and field measurement, and natural history observations (published reports, written surveys, and interviews with knowledgeable observers). Laboratory research, both neuroanatomical and behavioral, provided the most empirical data, primarily on sensory/perceptual capacities. Inferences from these data and narratives from surveys and interviews illuminated possibilities for higher order cognition. Evidence from field measurements was sparse, although substantial amounts of information have been collected from tracking data and to a lesser extent vessel impact studies, which can be used to infer cognitive attributes. Manatees are tactile-auditory specialists with complementary visual and chemosensory abilities. They demonstrate learning characteristics typical of vertebrates. Movement tracking data plus direct observations suggest that they have good spatial cognition, indicated by their ability to traverse complicated water networks and memory for foraging and warm water sites. They engage in a wide range of play-like, object manipulation, and mimetic behaviors, which suggests cognitive capacities beyond basic associative learning. Understanding manatee cognition beyond the laboratory will be necessary for conservation of manatees as they face challenges such as habitat degradation and threats from water-borne vessel traffic. There is a clear need for more direct research in natural settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adimey NM, Hudak CA, Powell JR, Bassos-Hull K, Foley A, Farmer MA, White L, Minch K (2014) Fishery gear interactions from stranded bottlenose dolphins, Florida manatees and sea turtles in Florida, U.S.A. Mar Pollut Bull 81:103–115

    Article  CAS  PubMed  Google Scholar 

  • Adimey NM, Ross M, Hall M, Reid JP, Barles ME, Keith Diagne LW, Bonde RK (2016) Twenty-six years of post-release monitoring of Florida manatees (Trichechus manatus latirostris): evaluation of a cooperative rehabilitation program. Aquatic Mamm 42:376–391. https://doi.org/10.1578/AM42.3.2016.376(IP-070186)

    Article  Google Scholar 

  • Ahnelt PK, Kolb H (2000) The mammalian photoreceptor mosaic-adaptive design. Prog Retinal Eye Res 19:711–777

    Article  CAS  Google Scholar 

  • Bachteler D, Dehnhardt G (1999) Active touch performance in the Antillean manatee: evidence for a functional differentiation of the facial tactile hairs. Zoology 102:61–69

    Google Scholar 

  • Barboza MLB, Larkin IVL (2020a) Gross and microscopic anatomy of the nasal cavity, including olfactory epithelium, of the Florida manatee (Trichechus manatus latirostris). Aquat Mamm 46:274–284

    Article  Google Scholar 

  • Barboza MLB, Larkin IVL (2020b) Functional morphology of the taste buds of the Florida manatee, Trichechus manatus latirostris. Marine Mamm Sci 36:939–952

    Article  CAS  Google Scholar 

  • Barrash J (1994) Age-related decline in route learning ability. Dev Neuropscyhol 10:189–201. https://doi.org/10.1080/87565649409540578

    Article  Google Scholar 

  • Bauer GB (2005) Research Training for Releasable Animals. Conserv Biology 19:1779–1789

    Article  Google Scholar 

  • Bauer GB, Colbert D, Fellner W, Gaspard J, Littlefield B (2003) Underwater visual acuity of Florida manatees, Trichechus manatus latirostris. Int J Comp Psych 16:130–142

    Google Scholar 

  • Bauer GB, Gaspard JC III, Colbert DE, Leach JB, Stamper SA, Mann D, Reep R (2012) Tactile discrimination of textures by Florida Manatees (Trichechus manatus latirostris). Mar Mamm Sci 28:456–471

    Article  Google Scholar 

  • Bauer GB, Cook PF, Harley HE (2020a) The relevance of ecological transitions to intelligence in marine mammals. Front Psychol 11:2053. https://doi.org/10.3389/fpsyg.2020.02053

    Article  PubMed  PubMed Central  Google Scholar 

  • Bauer GB, Deimeke M, Foltz A (2020b) Manatee/green sea turtle behavioral interactions: interspecies play? Sirenews 72:22–24

    Google Scholar 

  • Bauer GB, Reep RL (2017) Sirenian sensory processes. In: Vonk J, Shackelford TK (eds) Encyclopedia of animal cognition and behav. Springer International Publishing, New york, pp 1–7. https://doi.org/10.1007/978-3-319-47829-6_1318-1

    Chapter  Google Scholar 

  • Bills ML, Samuelson DA, Larkin IV (2013) Anal glands of the Florida manatee, Trichechus manatus latirostris, a potential source of chemosensory signal expression. Mar Mamm Sci 29:280–292

    Article  Google Scholar 

  • Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. Prog Zool 41:1–115

    Google Scholar 

  • Bullock TH (1986) Suggestions for research on ethological and comparative cognition. In: Schusterman RJ, Thomas JA, Wood FG (eds) Dolphin cognition and behavior: a comparative approach. Lawrence Erlbaum Assoc, New york, pp 207–219

    Google Scholar 

  • Bullock TH, Domning DP, Best RC (1980) Evoked brain potential demonstrate hearing in a manatee (Trichechus inunguis). J Mamm 61:130–133

    Article  Google Scholar 

  • Burghardt GM (2005) The genesis of animal play. Testing the limits. Cambridge, MIT Press

    Google Scholar 

  • Byrne RW, Bates LA (2011) Cognition in the wild: exploring animal minds with observational evidence. Biol Lett 7:619–622. https://doi.org/10.1098/rsbl.2011.0352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrne RW (1995) The thinking ape: evolutionary origins of intelligence. Oxford, New York

  • Caro TM, Hauser MD (1992) Is there teaching in nonhuman animals. Q Rev of Biol 67:151–174

    Article  CAS  Google Scholar 

  • Castelhano MS, Henderson JM (2008) The influence of color on the perception of scene gist. J Exp Psychol Hum Percept Perform 34:660. https://doi.org/10.1037/0096-1523.34.3.660

    Article  PubMed  Google Scholar 

  • Catania KC, Remple MS (2002) Somatosensory cortex dominated by the representation of teeth in the naked mole-rat brain. Proc Natl AcAd Sci 99:5692–5697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cattell JM (1890) Mental tests and measurements. Mind 15:373–380

    Article  Google Scholar 

  • Chapla ME, Nowacek DP, Rommel SA, Sadler VM (2007) CT scans and 3D reconstructions of Florida manatee (Trichechus manatus latirostris) heads and ear bones. Hearing Res 228:123–135

    Article  Google Scholar 

  • Clark DA, Mitra PP, Wang SS-H (2001) Scalable architecture in mammalian brains. Nature 411:189–193

    Article  CAS  PubMed  Google Scholar 

  • Colbert DE, Fellner W, Bauer GB, Manire CA, Rhinehart HL (2001) Husbandry and research training of two Florida manatees (Trichechus manatus latirostris). Aquat Mamm 27:6–23

    Google Scholar 

  • Colbert DE, Gaspard JC III, Reep R, Mann DA, Bauer GB (2009) Four-choice sound localization abilities of two Florida Manatees, Trichechus manatus latirostris. J Exp Biol 212:2105–2122

    Article  PubMed  Google Scholar 

  • Colbert-Luke DE, Gaspard JC III, Reep RL, Bauer GB, Dziuk K, Cardwell A, Mann DA (2015) Eight-choice sound localization by Manatees: performance abilities and head related transfer functions. J Comp Physiol A 201:249–259

    Article  Google Scholar 

  • Cook M, Varela R, Goldstein J, McCulloch S, Bossart G, Finnernan J, Houser D, Mann D (2006) Beaked whale auditory evoked potential hearing measurements. J Comp Physiol. A, Neuroethol, Sens, Neural, and Behav Physiol 192:489–495. https://doi.org/10.1007/s00359-005-0086-1

    Article  Google Scholar 

  • Cook PF, Reichmuth C, Rouse AA, Libby LA, Dennison SE, Carmichael OT, Kruse-Elliot KT, Bloom J, Singh B, Fravel VA, Barbarosa L, Stuppino JJ, van Bonn WG, Gulland FMD, Ranganath C (2015) Algal toxin impairs sea lion memory and hippocampal connectivity, with implications for strandings. Science 350:1545–1547. https://doi.org/10.1126/science.aac5675

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, Montgomery JC (1999) The enigmatic lateral line system. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer, New York, pp 319–362

    Chapter  Google Scholar 

  • Crish SD, Comer CM, Marasco PD, Catania KC (2003) Somatosensation in the superior colliculus of the star-nosed mole. J Comp Neurol 464:415–425

    Article  PubMed  Google Scholar 

  • Dawson WW, Schroeder JP, Sharpe SN (1987) Corneal surface properties of two marine mammal species. Mar Mamm Sci 3:186–197

    Article  Google Scholar 

  • Deutsch CJ, Reid JP, Bonde RK, Easton DE, Kochman HI, O’Shea TJ (2003) Seasonal movements, migratory behavior, and site fidelity of West Indian manatees along the Atlantic coast of the United States. Wildl Soc Wildl Monogr 151:77

    Google Scholar 

  • Deutsch CJ, Barlas ME (2016) Manatee response to the conversion of the FPL Cape Canaveral power plant: movements, warm-water habitat use, and thermal regime of satellite-tagged manatees during winters 2010-11. Final report to Florida Power and Light Company, FWC/FWRI file F2864-10-15-F, 133 pp + Appendices

  • Dobson FS (1982) Competition for mates and predominant juvenile male dispersal in mammals. Anim Behav 30:1183–1192

    Article  Google Scholar 

  • Van Essen D (2004) Organization of visual areas in macaque and human cerebral cortex. In: Chalupa LM, Werner JS (eds) The visual neurosciences, vol 1. MIT Press, Cambridge, pp 507–521

    Google Scholar 

  • Ettinger G, Garcha HA (1980) Cross-modal recognition by the monkey: The effects of cortical removals. Neuropsychol 18:685–692

    Article  Google Scholar 

  • Fellner W, Odell K, Corwin A, Davis L, Goonen C, Larkin I et al (2010) Response to conditioned stimuli by two rehabilitated and released West Indian manatees (Trichechus manatus latirostris). Aquat Mamm 32(1):66–74. https://doi.org/10.1578/AM.32.1.2006.66

    Article  Google Scholar 

  • Finlay BL, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1517–1584

    Article  Google Scholar 

  • Florida Fish and Wildlife Conservation Commission (2022) Updates on manatee rescue responses and mortality. https://myfwc.com/research/manatee/rescue-mortality-response/ume/updates/ Accessed Apr 7 2022

  • Fox MD, Snyder AZ, Vincent JL, Corbetta N, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. PNAS 102:9673–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedl WA, Nachtigall PE, Moore PWB, Chun NKW, Haun JE, Hall RW, Richards JL (1990) Taste reception in the Pacific bottlenose dolphin (Tursiops truncatus gilli) and the California sea lion (Zalophus californianus). In: Thomas JA, Kastelein RA (eds) Sensory Abilities of Cetaceans: Laboratory and Field Evidence. Plenum Press, London, pp 447–455

    Chapter  Google Scholar 

  • Galton F (1983) Inquiry into human faculty and its development. Macmillan

    Google Scholar 

  • Garland EC, Garrigue C, Noad MJ (2021) When does cultural evolution become cumulative culture? A case study of humpback whale song. Philos Trans R Soc B. https://doi.org/10.1098/RSTB.2020.0313

    Article  Google Scholar 

  • Gaspard JC III, Bauer GB, Reep RL, Dziuk K, Mann DA (2012) Audiogram and auditory critical ratios of two florida manatees (Trichechus manatus latirostris). J Exp Biol 215:1442–1447

    Article  PubMed  Google Scholar 

  • Gaspard JC, Bauer GB, Reep RL, Dziuk K, Read L, Mann DA (2013) Detection of hydrodynamic stimuli by the Florida manatee (Trichechus manatus latirostris). J Comp Physiol A 199:441–450

    Article  Google Scholar 

  • Gaspard JC, Bauer GB, Mann DA, Boerner K, Denum L, Frances C, Reep RL (2017) Detection of hydrodynamic stimuli by the postcranial body of Florida manatees (Trichechus manatus latirostris). J Comp Physiol A 203:111–120

    Article  Google Scholar 

  • Gerstein ER (1994) The manatee mind: discrimination training for sensory perception testing of West Indian manatees (Tricheachus (sic) manatus). Mar Mamm Public Disp Res 1:10–21

    Google Scholar 

  • Gerstein E, Gerstein L, Forsythe S, Blue J (1999) The underwater audiogram of the West Indian manatee (Trichechus manatus). J Acoust Soc Amer 105:3575–3583

    Article  CAS  Google Scholar 

  • Griebel U, Schmid A (1996) Color vision in the manatee (Trichechus manatus). Vision Res 36:2747–2757

    Article  CAS  PubMed  Google Scholar 

  • Griebel U, Schmid A (1997) Brightness discrimination ability in the West Indian manatee (Trichechus manatus). J Exp Biology 200:1587–1592

    Article  CAS  Google Scholar 

  • Harley H (2008) Whistle discrimination and categorization by the Atlantic bottlenose dolphin (Tursiops truncatus): a review of the signature whistle framework and a perceptual test. Beh Processes 772:248–268

    Google Scholar 

  • Harley HE, Roitblat HL, Nachtigall PE (1996) Object representation in the bottlenose dolphin (Tursiops truncatus): integration of visual and echoic information. J Exp Psychol Anim Behav Proc 22:164–174

    Article  CAS  Google Scholar 

  • Harper JY, Samuelson DA, Reep RL (2005) Corneal vascularization in the Florida manatee (Trichechus manatus latirostris) and three-dimensional reconstruction of vessels. Vet Ophth 8:89–99

    Article  Google Scholar 

  • Hartman DS (1979) Ecology and behavior of the manatee (Trichechus manatus) in Florida. Special publication, Am Soc of Mammal, p 153

    Book  Google Scholar 

  • Hassan ES (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish Anoptichthys jordani. In: Coombs S, Gorner P, Munz H (eds) The mechanosensory lateral line. Springer-Verlag, New York, pp 217–227

    Chapter  Google Scholar 

  • Hénaut Y, Lara-Sánchez LE, Morales-Vela B, Machkour-M’Rabet S (2020) Learning capacities and welfare in an Antillean manatee. Trichechus Manatus Manatus Comptes Rendus Biologies 343(1):73–87

    Article  PubMed  Google Scholar 

  • Herman LM (2002) Vocal, social, and self-imitation. In: Dautenhahn K, Nehaniv CL (eds) Imitation in animals and artifacts. MIT Press, pp 63–108

    Google Scholar 

  • Herman LM, Peacock MF, Yunker MP, Madsen CJ (1975) Bottle-nosed dolphin: double slit pupil yields equivalent aerial and underwater diurnal acuity. Science 189:650–652

    Article  CAS  PubMed  Google Scholar 

  • Herman LM, Pack AA (1992) Echoic-Visual Cross-Modal Recognition by a Dolphin. In: Thomas JA, Kastelein RA, Supin AY (eds) Mar Mamm Sens Syst. Springer, Boston. https://doi.org/10.1007/978-1-4615-3406-8_44

    Chapter  Google Scholar 

  • Herzing DL (2000) Acoustics and social behavior of wild dolphins: Implications for a sound society. In: Au WWL, Popper AN, Fay RR (eds) Hearing by Whales and Dolphins. Springer-Verlag, Berlin

    Google Scholar 

  • Hilgard ER (1980) The trilogy of mind: cognition, affection, and conation. J Hist Behav Sci 16:107–117

    Article  CAS  PubMed  Google Scholar 

  • Hopkins WD, Mareno MC, Neal Webb SJ, Schapiro SJ, Raghanti MA, Sherwood CC (2021) Age-related changes in chimpanzee (Pan troglodytes) cognition: Cross-sectional and longitudinal analyses. Am J of Primatol 83(3):1–9. https://doi.org/10.1002/ajp.23214

    Article  Google Scholar 

  • Horton TW, Zerbini AN, Andriolo A, Danilowicz D, Sucunza F (2020) Multi-decadal humpback whale migratory route fidelity despite oceanographic and geomagnetic change. Front in Mar Sci 7:1–19

    Article  Google Scholar 

  • Hughes HH (1999) Sensory Exotica: a World beyond sensory experience. MIT Press, Cambridge

    Book  Google Scholar 

  • Jaakkola K, Guarino E, Rodriguez M (2010) Blindfolded imitation in a bottlenose dolphin (Tursiops truncatus). Int J Comp Psychol 234:671–688

    Google Scholar 

  • Jaakkola K, Guarino E, Rodriguez M, Hecksher J (2013) Switching strategies: a dolphin’s use of passive and active acoustics to imitate motor actions. Anim Cogn 165:701–709

    Article  Google Scholar 

  • Janik VM (2000) Whistle matching in wild bottlenose dolphins (Tursiops truncatus). Science 289:1355–1357

    Article  CAS  PubMed  Google Scholar 

  • Johnson CM (2014) The cognitive ecology of dolphin social engagement. In: Herzing DL, Johnson CM (eds) Dolphin communication and cognition: past, present, and future. MIT Press, Cambridge

    Google Scholar 

  • Kalat JW (2013) Biological psychology, 11e. Wadsworth, Belmont

    Google Scholar 

  • Klishin VO, Diaz RP, Popov VV, Supin AY (1990) Some characteristics of hearing of the Brazilian manatee Trichechus Inunguis. Aquat Mamm 16(140):144

    Google Scholar 

  • Krubitzer LA, Seelke AMH (2012) Cortical evolution in mammals: the bane and beauty of phenotypic variability. PNAS 109:10647–10654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin MJ, Pfeiffer CJ (2002) Gross and microscopic observations on the lingual structure of the Florida manatee Trichechus manatus latirostris. Anat Histol Embryol 31:278–285

    Article  CAS  PubMed  Google Scholar 

  • Levy-Tzedek S, Riemer D, Amedi A (2014) Color improves “visual” acuity via sound. Front Neurosci 11(8):358. https://doi.org/10.3389/fnins.2014.00358

    Article  Google Scholar 

  • Lloyd-Jones TJ, Nakabayashi K (2009) Independent effects of colour on object identification and memory. Q J Exp Psychol 62:310–322. https://doi.org/10.1080/17470210801954827

    Article  Google Scholar 

  • Mackay-Sim A, Duvall D, Graves BM (1985) The West Indian manatee (Trichechus manatus) lacks a vomeronasal organ. Brain Behav Evol 27:186–194

    Article  CAS  PubMed  Google Scholar 

  • Macphail EM (1982) Brain and intelligence in vertebrates. Clarendon Press

    Google Scholar 

  • Macphail EM (1987) The comparative psychology of intelligence. Behav and Brain Sci 10:645–695

    Article  Google Scholar 

  • Mann D, Hill M, Casper B, Colbert D, Gaspard J, Bauer GB (2005) Temporal resolution of the Florida manatee (Trichechus manatus latirostris) auditory system. J Comp Physiol 191:903–908

    Article  Google Scholar 

  • Mann DA, O’Shea TJ, Nowacek DP (2006) Nonlinear dynamics in manatee vocalizations. Marine Mamm Sci 22:548–555

    Article  Google Scholar 

  • Mann D, Hill-Cook M, Manire C, Greenhow D, Montie E, Powell J, Wells R, Bauer G, Cunningham-Smith P, Lingenfelser R, DiGiovanni R Jr, Stone Brodsky AM, Stevens R, Kieffer G, Hoetjes P (2010) Hearing loss in stranded odontocete dolphins and whales. PLoS ONE 5(11):e13824. https://doi.org/10.1371/journal.pone.0013824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh H, O’Shea TJ, Reynolds JE III (2012) Ecology and conservation of the Sirenia: dugongs and manatees. Cambridge University Press, Cambridge, p 521

    Google Scholar 

  • Marshall CD, Reep RL (1995) Manatee cerebral cortex: cytoarchitecture of the caudal region in Trichechus manatus latirostris. Brain Behav Evol 45:1–18

    Article  CAS  PubMed  Google Scholar 

  • Marshall CD, Clark LA, Reep RL (1998a) The muscular hydrostat of the Florida manatee (Trichechus manatus latirostris) and its role in the use of perioral bristles. Mar Mamm Sci 14:290–303

    Article  Google Scholar 

  • Marshall CD, Huth GD, Edmonds VM, Halin DL, Reep RL (1998b) Prehensile use of perioral bristles during feeding and associated behaviors of the Florida manatee (Trichechus manatus latirostris). Mar Mamm Sci 14:274–289

    Article  Google Scholar 

  • Mass AM, Supin AY (1989) Distribution of ganglion cells in the retina of an Amazon river dolphin Inia geoffrensis. Aquat Mamm 15:49–56

    Google Scholar 

  • Mass AM, Odell DK, Ketten DR, Supin AY (1997) Ganglion layer topography and retinal resolution of the Caribbean manatee Trichechus manatus latirostris. Doklady Biol Sci 355:392–394

    Google Scholar 

  • Mazzei P (2022) Trying everything, even Lettuce, to save Florida’s beloved manatees. New York Times, New York, pp 20–21

    Google Scholar 

  • Miksis-Olds JL, Tyack PL (2009) Manatee (Trichechus manatus) vocalization usage in relation to environmental noise levels. J Acoust Soc Am 125:1806–1815

    Article  PubMed  Google Scholar 

  • Miksis-Olds JL, Donaghay PL, Miller JH, Tyack PL, Reynolds JE III (2007) Simulated vessel approaches elicit differential responses from manatees. Mar Mamm Sci 23:629–649

    Article  Google Scholar 

  • Murphy CJ, Howland HC, Mutti D, Samuelson D, Bentley E, Bauer G, Colbert D, Gaspard J, Harper J (2003) Report of evaluation of visual capabilities of manatees (2003) Mote Mar Lab (unpublished report)

  • Newman LA, Robinson PR (2006) The visual pigments of the West Indian manatee (Trichechus manatus). Vision Res 46:3326–3330

    Article  CAS  PubMed  Google Scholar 

  • Nowacek SM, Wells RS, Owen ECG, Speakman TR, Flamm RO, Nowacek DP (2004) Florida manatees, Trichechus manatus latirostris, respond to approaching vessels. Biol Cons 119:517–523

    Article  Google Scholar 

  • O’Shea TJ, Poche LB (2006) Aspects of underwater sound communication in Florida manatees (Trichechus manatus latirostris). J Mammalogy 87:1061–1071

    Article  Google Scholar 

  • O’Shea TJ, Lefebvre LW, Beck CA (2001) Florida manatees: perspectives on populations, pain, and protection. In: Dierauf LA, Gulland FMD (eds) Handbook of marine mammal medicine, 2nd edn. CRC Press, Boca Raton, FL, pp 31–43

    Chapter  Google Scholar 

  • O’Shea TJ, Beck CA, Hodgson A, Keith-Diagne L, Marmontel M Social and Reproductive Behaviors. In: Marsh H (ed) Ethology and Behavioral Ecology of Marine Mammals. Springer Nature, Switzerland (in press). https://doi.org/10.1007/978-3-030-90742-6_4

  • Oliva A, Schyns PG (2000) Diagnostic colors mediate scene recognition. Cogn Psychol 41:176–210. https://doi.org/10.1006/cogp.1999.0728

    Article  CAS  PubMed  Google Scholar 

  • O’Shea TJ, Reep RL (1990) Encephalization quotients and life-history traits in the Sirenia. J Mammalogy 71:534–543

    Article  Google Scholar 

  • Papini MR (2002) Patterns and process in the evolution of learning. Psychol Rev 109:186–201

    Article  PubMed  Google Scholar 

  • Piggins DJ, Muntz WRA, Best RC (1983) Physical and morphological aspects of the eye of the manatee, Trichechus inunguis. Natterer 1883: (Sirenia: mammalia). Mar Behav and Physiol 9:111–130

    Article  Google Scholar 

  • Pillay P, Manger PR (2007) Order-specific quantitative patterns of cortical gyrification. Eur J Neurosci 25:2705–2712

    Article  PubMed  Google Scholar 

  • Pritchard DJ, Hurley TA, Tello-Ramos MC, Healy SD (2016) Why study cognition in the wild (and how to test it). J Exp Anal of Behav 105:41–55

    Article  Google Scholar 

  • Phillips R, Niezrecki C, Beusse DO (2006) Theoretical detection ranges for acoustic based manatee avoidance technology. J Acoust Soc Am 120:153–163

    Article  PubMed  Google Scholar 

  • Ramos EA, Maust-Mohl M, Collom KA, Brady B, Gerstein ER, Magnasco MO, Reiss D (2020) The Antillean manatee produces broadband vocalizations with ultrasonic frequencies. J Acoust Soc Am 147(2):80–86

    Article  Google Scholar 

  • Rathbun GB, O’Shea TJ (1984) The manatee’s simple social life: Scent marking in an aquatic mammal. In: MacDonald D (ed) The encyclopedia of mammals. Facts on file, New York, NY, pp 300–301

    Google Scholar 

  • Rathbun GB, Reid JP, Bonde RK, Powell JA (1995) Reproduction in free-ranging Florida manatees. In: O’Shea TJ, Ackerman BB, Percival HF (eds) Population biology of the Florida Manatee (Trichechus manatus latirostris), National Biological Service, Information and Technology Report 1. 89, pp. 13–156

  • Reader SM, Laland KN (2003) Animal innovation. Oxford University Press, NY

    Book  Google Scholar 

  • Reep RL, Bonde RK (2021) The Florida manatee: biology and conservation, 2nd edn. University Press of Florida, Gainesville

    Google Scholar 

  • Reep RL, O’Shea TJ (1990) Regional brain morphometry and lissencephaly in the Sirenia. Brain Behav Evol 35:185–194

    Article  CAS  PubMed  Google Scholar 

  • Reep RL, Johnson JI, Switzer RC, Welker WI (1989) Manatee cerebral cortex: cytoarchitecture of the frontal region in Trichechus manatus latirostris. Brain Behav Evol 34:365–386

    Article  CAS  PubMed  Google Scholar 

  • Reep RL, Marshall CD, Stoll ML, Whitaker DM (1998) Distribution and innervation of facial bristles and hairs in the Florida manatee (Trichechus manatus latirostris). Mar Mamm Sci 14:257–273

    Article  Google Scholar 

  • Reep RL, Marshall CD, Stoll ML, Homer BL, Samuelson DA (2001) Microanatomy of facial vibrissae in the Florida manatee: the basis for specialized sensory function and oripulation. Brain Behav Evol 58:1–14

    Article  CAS  PubMed  Google Scholar 

  • Reep RL, Marshall CD, Stoll ML (2002) Tactile hairs on the postcranial body in Florida manatees: a mammalian lateral line? Brain Behav Evol 59:141–154

    Article  CAS  PubMed  Google Scholar 

  • Reep RL, Finlay BL, Darlington RB (2007) The limbic system in mammalian brain evolution. Brain Behav Evol 70:57–70

    Article  CAS  PubMed  Google Scholar 

  • Reid JP, Butler SM, Easton DE, Stith BM (2003) Movements and habitat requirements of radio tagged manatees in southwest Florida; implications for restoration assessment. Poster presented at the Joint conference on the science and restoration of the greater Everglades and Florida Bay ecosystem, April 13–18, Palm Harbor

  • Reid J (1995) Chessie’s most excellent adventure: 1995 east coast tour. Sirenews (newsletter of the IUCN/SSC Sirenia specialist group), DP Domning (ed), p 9–11

  • Reyes LD, Stimpson CD, Gupta K, Raghanti MA, Hof PR, Reep RL, Sherwood CC (2015) Neuron types in the presumptive primary somatosensory cortex of the Florida manatee (Trichechus manatus latirostris). Brain Behav Evol 86:210–231. https://doi.org/10.1159/000441964

    Article  PubMed  Google Scholar 

  • Reyes LD, Harland T, Reep RL, Sherwood CC, Jacobs B (2016) Golgi analysis of neuron morphology in the presumptive primary somatosensory cortex and visual cortex of the Florida manatee (Trichechus manatus latirostris). Brain Behav Evol 87:105–116. https://doi.org/10.1159/000445495

    Article  PubMed  Google Scholar 

  • Reynolds JE III (1981) Aspects of the social behavior and herd-structure of a semi-isolated colony of West Indian manatees, Trichechus manatus. Mammalia 45:431–451

    Google Scholar 

  • Reynolds JE III, Odell DK (1991) Manatees and dugongs. Facts on File, New York, p 192

    Google Scholar 

  • Reynolds JE III, Rommel SA (1996) Structure and function of the gastrointestinal tract of the Florida manatee, Trichechus manatus. Anat Rec 245:539–558

    Article  PubMed  Google Scholar 

  • Rice FR (1995) Comparative aspects of barrel structure and development. In: Jones EG, Peters A (eds) Cerebral cortex: the barrel cortex of rodents. Plenum, New York, pp 1–75

    Google Scholar 

  • Rice FL, Mance A, Munger BL (1986) A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes. J Comp Neurol 252(2):154–174. https://doi.org/10.1002/cne.902520203

    Article  CAS  PubMed  Google Scholar 

  • Richardson, WJ, Greene, CR, Malme, CI, Thompson. DH (1995) Marine mammals and noise. Academic Press, San Diego

  • Ridgway SH (1986) Physiological observations of dolphin brains. In: Schusterman RJ, Thomas JA, Wood FG (eds) Dolphin cognition and behavior: a comparative approach. Lawrence Erlbaum Assoc, New york, pp 31–59

    Google Scholar 

  • Roitblat HL (1985) Introduction to comparative cognition. Freeman, NY

    Google Scholar 

  • Roitblat HL (2002) The cognitive Dolphin. In: Bekoff M, Allen C, Burghardt GM (eds) The cognitive animal: empirical and theoretical perspectives and animal cognition. MIT, Cambridge, pp 183–187

    Google Scholar 

  • Romanes GJ (1884) Mental evolution in animals. Appleton, NY

    Google Scholar 

  • Rousselet G, Joubert O, Fabre-Thorpe ML (2005) How long to get to the ‘gist’ of real-world natural scenes? Vis Cogn 12:852–877. https://doi.org/10.1080/13506280444000553

    Article  Google Scholar 

  • Rycyk AM, Deutsch CJ, Barlas ME, Hardy SK, Frisch K, Leone EH et al (2018) (2018) Manatee behavioral response to boats. Mar Mamm Sci 34:924–962. https://doi.org/10.1111/mms.12491

    Article  Google Scholar 

  • Rycyk AM, Bauer GBB, Wells S, Gaspard JC III, Mann D (2022) The influence of variations in background noise on Florida manatee (Trichechus manatus latirostris) detection of boat noise and vocalizations. PLoS One 17(5):e0268513. https://doi.org/10.1371/journal.pone.0268513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rycyk AM, Factheu C, Ramos EA, Brady BA, Kikuchi M, Nations HF, Takoukam Kamla A (2021) First characterization of vocalizations and passive acoustic monitoring of the vulnerable African manatee (Trichechus senegalensis). J of the Acoust Soc of Am 150(4):3028–3037

    Article  Google Scholar 

  • Samuelson D, McGee J, Ben-Shlomo G, Bauer G, Murphy C, Howland H, Lewis P (2012) An Overview of the Visual System of the Florida Manatee (Trichechus manatus latirostris). Presented at Florida Marine Mammal Health Conference IV, Mote Marine Laboratory, Florida

  • Sarko DK, Reep RL (2007) Somatosensory areas of manatee cerebral cortex: histochemical characterization and functional implications. Brain Behav Evol 69:20–36

    Article  CAS  PubMed  Google Scholar 

  • Sarko DK, Reep RL, Mazurkiewicz JE, Rice FL (2007a) Adaptations in the structure and innervation of follicle-sinus complexes to an aquatic environment as seen in the Florida manatee (Trichechus manatus latirostris). J Comp Neurol 504:217–237

    Article  PubMed  Google Scholar 

  • Sarko DK, Johnson JI, Switzer RC, Welker WI, Reep RL (2007b) Somatosensory nuclei of the brainstem and thalamus in Florida manatees. Anat Rec 290:1138–1165

    Article  Google Scholar 

  • Sayigh L, Tyack P, Wells R, Scott M (1995) Sex difference in signature whistle production of free-ranging bottlenose dolphins, Tursiops truncatus. Behav Ecol and Sociobiol 36:171–177

    Article  Google Scholar 

  • Shettleworth SJ (2010) Cognition, evolution, and behavior, 2nd edn. Oxford University Press, New York, p 700

    Google Scholar 

  • Sousa-Lima RS, Paglia AP, Da Fonseca GAB (2002) Signature information and individual recognition in the isolation calls of Amazonian manatees, Trichechus inunguis (Mammalia: Sirenia). Animal Behav 63:301–310

    Article  Google Scholar 

  • Sticken J, Dehnhardt G (2000) Salinity discrimination in harbour seals: a sensory basis for spatial orientation in the marine environment? Naturwissenschaften 87:499–502

    Article  CAS  PubMed  Google Scholar 

  • Stith BM, Slone DH, Reid JP (2006) Review and synthesis of manatee data in Everglades National Park. USGS Administrative Report

  • Striedter GF (2004) Principles of brain evolution. Sinauer Press, Sunderland, pp 51–70

    Google Scholar 

  • Supin YA, Popov VV, Mall AM (2001) The sensory physiology of aquatic mammals. Kluwer Acad Publ, Norwell

    Book  Google Scholar 

  • Thorndike EL (1898) Animal intelligence, experimental study of associative processes in animals. Psychol Rev Monogr Supplement 8(2):1–109

    Google Scholar 

  • Thorndike EL (1911) Animal intelligence. Hafner Publishing, Darien

    Google Scholar 

  • Torralba A (2009) How many pixels make an image? Vis Neurosci 26:123–131. https://doi.org/10.1017/S0952523808080930

    Article  PubMed  Google Scholar 

  • Tyack PL, Clark CW (2000) Communication and acoustic behavior of dolphins and whales. In: Au WWL, Popper AN, Fay RR (eds) Hearing by whales and dolphins. Springer, Verlag

    Google Scholar 

  • U.S. Fish and Wildlife Service (2001) Technical/agency draft, florida manatee recovery plan, (Trichechus manatus latirostris), Third Revision. U.S. Fish and Wildlife Service, Atlanta, p 138

    Google Scholar 

  • von Uexküll J (1934) A stroll through the worlds of animals and men: a picture book of invisible worlds. In: Schiller CH (ed) Instinctive behavior: the development of a modern concept. International Universities Press, Inc., New York

    Google Scholar 

  • Umeed R, Attademo FLN, Bezerra B (2018) The influence of age and sex on the vocal repertoire of the Antillean manatee (Trichechus manatus manatus) and their responses to call playback. Mar Mamm Sci 34:577–594

    Article  Google Scholar 

  • Wartzok D, Ketten DR (1999) Marine mammal sensory systems. In: Reynolds JE III, Rommel SA (eds) Biol of Mar Mamm. Smithsonian Institution Press, Washington

    Google Scholar 

  • Walker MM, Kirschvink JL, Ahmed G, Dizon A (1992) Evidence that fin whales respond to the geomagnetic field during migration. J Exp Biol 171:67–78

    Article  CAS  PubMed  Google Scholar 

  • Weigle BL, Wright IE, Ross M, Flamm R (2001) Movements of radio-tagged manatees in Tampa Bay and along Florida’s west coast 1991–1996. Florida Marine Research Institute, Technical Report 7

  • Wells RS, Boness DJ, Rathbun GB (1999) Behavior. In: Reynolds JE III, Rommel SA (eds) Biology of marine mammals. Smithsonian Institution Press, Washington, pp 34–422

    Google Scholar 

  • Whiten A, Ham R (1992) On the nature and evolution of imitation in the animal kingdom: reappraisal of a century of research. Adv Study Behav 21:239–283

    Article  Google Scholar 

  • Wiltschko R, Wiltschko W (1995) Magnetic orientation in animals. Springer, New York

    Book  Google Scholar 

  • Windsor SP (2014) Hydrodynamic imaging by blind Mexican cavefish. In: Bleckmann H, Mogdans J, Coombs SL (eds) Flow sensing in air and water. Springer, Heidelberg, pp 103–125

    Chapter  Google Scholar 

  • Wurm LH, Legge GE, Isenberg LM, Luebker A (1993) Color improves object recognition in normal and low vision. J Exp Psychol Hum Percept Perform 19:899

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki F, Komatsu S, Kamiya T (1980) A comparative morphological study on the tongues of manatee and dugong (Sirenia). Sci Rep Whales Res Inst 32:127–144

    Google Scholar 

  • Zentall TR (1996) An analysis of imitative learning in animals. In: Galef BG (ed) Heyes C. The roots of culture. Acad Press, Social learning in animals, pp 221–243

    Google Scholar 

Download references

Acknowledgements

We thank all of the participants in our surveys and interviews for sharing their observations and insights. Survey respondents: Cora Bercham, Mike Birns, Don Dematteis, Holly Edwards, Nicola Erdsack, Clinton Factheu, Tiare Fridrich, Hoslo Jiwa, Lucy Keith-Diagne, Jean-Pascal Koh Dimbot, Vincent Maida, Christy Achtone Nkollo Aganga, Wongibe Poupezo Dieudonne, Monica Ross, Kerry Sanchez, Justin Strickland. The following pairs participated in online interviews: Bob Bonde and Kathy Beck, Wayne Hartley and Jennifer McGee, Tom O'Shea and Buddy Powell, Jim Reid and Susan Butler, Pat Rose and Cora Berham, Monica Ross and Nicole Bartlett. Athena Rycyk and Tony Mignucci sent us some important observations, individually. Duff Cooper set up the survey in Qualtrics and handled data management. Hannah Hoogerwoerd helped with everything–setting up Zoom meetings, editing and formatting the text, and finding references. Heidi Harley made helpful suggestions on the manuscript. We thank everyone for their invaluable participation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon B. Bauer.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Ethical approval

This study was given exempt status by the Institutional Review Board (IRB) of New College of Florida. All surveys and interviews with human participants were in accordance with ethical standards of the IRB.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, G.B., Reep, R.L. Manatee cognition in the wild: an exploration of the manatee mind and behavior through neuroanatomy, psychophysics, and field observations. Anim Cogn 25, 1161–1182 (2022). https://doi.org/10.1007/s10071-022-01686-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-022-01686-6

Keywords

Navigation