Skip to main content

Memory enhances problem solving in the fawn-footed mosaic-tailed rat Melomys cervinipes

Abstract

Problem solving is important for survival, allowing animals to access novel food resources or escape from predators. It was originally thought to rely on an animal’s intelligence; however, studies examining the relationship between individual cognitive ability and problem solving performance show mixed results, and studies are often restricted to only one cognitive and one problem solving task. We investigated the relationship between general cognitive ability and problem solving across multiple tasks in the fawn-footed mosaic-tailed rat Melomys cervinipes. We measured general cognitive ability across different domains (memory in an odour learning association task, recognition in a novel object recognition task, size discrimination using different sized pieces of food, and learning across multiple presentations of a food-baited activity board). We also measured problem solving across different contexts (food-baited puzzle boxes in home cage, obstruction task, and food-baited activity board in a novel arena). Mosaic-tailed rats showed a general cognitive ability, with average problem solving latency, memory ability, and learning in the tile task being correlated. As such, individuals that were able to remember an association and learned to solve the tile task solved the problems faster than individuals that could not remember or learn. Our results suggest that problem solving in mosaic-tailed rats likely relies on some forms of simple cognition, particularly memory, but could also depend on other traits, such as an individual’s persistence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Availability of data and material

The dataset has been included as supplementary material.

Code availability

Please contact the authors for the statistical analyses code.

References

  1. Aisner R, Terkel J (1992) Ontogeny of pine cone opening behaviour in the black rat, Rattus rattus. Anim Behav 44:327–336. https://doi.org/10.1016/0003-3472(92)90038-B

    Article  Google Scholar 

  2. Arleo A, Gerstner W (2000) Spatial cognition and neuro-mimetic navigation: a model of hippocampal place cell activity. Biol Cybern 83:287–299. https://doi.org/10.1007/s004220000171

    Article  PubMed  CAS  Google Scholar 

  3. Banerjee K, Chabris CF, Johnson VE, Lee JJ, Tsao F, Hauser MD (2009) General intelligence in another primate: individual differences across cognitive task performance in a New World monkey (Saguinus oedipus). PLoS One 4:e5883. https://doi.org/10.1371/journal.pone.0005883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bee M, Bernal X, Calisi R, Carere C, Carter T, Fuertbauer L, Ha JC, Hubrecht R, Jennings D, Metcalfe N, Ophir AG, Ratcliffe JM, Roth T II, Smith A, Sneddon L, Vitale A (2020) Guidelines for the treatment of animals in behavioural research and teaching. Anim Behav 159:i–xi

    Google Scholar 

  5. Benson-Amram S, Heinen VK, Dryer SL, Holekamp KE (2011) Numerical assessment and individual call discrimination by wild spotted hyaenas, Crocuta crocuta. Anim Behav 82:743–752. https://doi.org/10.1016/j.anbehav.2011.07.004

    Article  Google Scholar 

  6. Bevins RA, Besheer J (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study ‘recognition memory.’ Nat Protoc 1:1306. https://doi.org/10.1038/nprot.2006.205

    Article  PubMed  Google Scholar 

  7. Boogert NJ, Reader SM, Hoppitt W, Laland KN (2008) The origin and spread of innovations in starlings. Anim Behav 75:1509–1518. https://doi.org/10.1016/j.anbehav.2007.09.033

    Article  Google Scholar 

  8. Boogert NJ, Anderson RC, Peters S, Searcy WA, Nowicki S (2011) Song repertoire size in male song sparrows correlates with detour reaching, but not with other cognitive measures. Anim Behav 81:1209–1216. https://doi.org/10.1016/j.anbehav.2011.03.004

    Article  Google Scholar 

  9. Borrego N, Dowling B (2016) Lions (Panthera leo) solve, learn, and remember a novel resource acquisition problem. Anim Cog 19:1019–1025. https://doi.org/10.1007/s10071-016-1009-y

    Article  Google Scholar 

  10. Bouchard J, Goodyer W, Lefebvre L (2007) Social learning and innovation are positively correlated in pigeons (Columba livia). Anim Cog 10:259–266. https://doi.org/10.1007/s10071-006-0064-1

    Article  Google Scholar 

  11. Burkart JM, Schubiger MN, van Schaik CP (2017) The evolution of general intelligence. Behav Brain Sci 40:e195. https://doi.org/10.1017/S0140525X16000959

    Article  PubMed  Google Scholar 

  12. Callaway WA, Turner AA, Croshaw OB, Ferguson JA, Julson ZJN, Volp TM, Kerr SE, Rymer TL (2018) Melomys cervinipes (Rodentia: Muridae). Mamm Species 50:134–147. https://doi.org/10.1093/mspecies/sey015

    Article  Google Scholar 

  13. Cauchard L, Boogert NJ, Lefebvre L, Dubois F, Doligez B (2013) problem solving performance is correlated with reproductive success in a wild bird population. Anim Beh 85:19–26. https://doi.org/10.1016/j.anbehav.2012.10.005

    Article  Google Scholar 

  14. Cauchoix M, Chow PKY, van Horik JO, Atance CM, Barbeau EJ, Barragan-Jason G, Bize P, Boussard A, Buechel SD, Cabirol A, Cauchard L, Claidiere N, Dalesman S, Devaud JM, Didic M, Doligez B, Fagot J, Fichtel C, Henke-von der Malsburg J, Hermer E, Huber L, Huebner F, Kappeler PM, Klein S, Langbein J, Langley EJG, Lea SEG, Lihoreau M, Lovlie H, Matzel LD, Nakagawa S, Nawroth C, Oesterwind S, Sauce B, Smith EA, Sorato E, Tebbich S, Wallis LJ, Whiteside MA, Wilkinson A, Chaine AS, Morand-Ferron J (2018) The repeatability of cognitive performance: a meta-analysis. Philos Trans R Soc Lond B Biol Sci 373:20170281

    Article  Google Scholar 

  15. Chow PKY, Lea SE, de Ibarra NH, Robert T (2017) How to stay perfect: the role of memory and behavioural traits in an experienced problem and a similar problem. Anim Cog 20:941–952. https://doi.org/10.1007/s10071-017-1113-7

    Article  Google Scholar 

  16. Cole EF, Morand-Ferron J, Hinks AE, Quinn JL (2012) Cognitive ability influences reproductive life history variation in the wild. Curr Biol 22:1808–1812. https://doi.org/10.1016/j.cub.2012.07.051

    Article  PubMed  CAS  Google Scholar 

  17. Coleman K, Tully LA, McMillan JL (2005) Temperament correlates with training success in adult rhesus macaques. Am J Primatol 65:63–71. https://doi.org/10.1002/ajp.20097

    Article  PubMed  Google Scholar 

  18. Crawford DW, Bendrath S, Manzano MD, Mehta A, Patel HM, Piela MC, Sauce B, Matzel LD (2020) Intelligence demands flexibility: Individual differences in attentional disengagement strongly predict the general cognitive ability of mice. Learn Motiv 1:101657. https://doi.org/10.1016/j.lmot.2020.101657

    Article  Google Scholar 

  19. Cussen VA (2017) Psittacine cognition: individual differences and sources of variation. Behav Proc 134:103–109. https://doi.org/10.1016/j.beproc.2016.11.008

    Article  Google Scholar 

  20. Damerius LA, Burkart JM, van Noordwijk MA, Haun DB, Kosonen ZK, Galdikas BM, Saraswati Y, Kurniawan D, van Schaik CP (2019) General cognitive abilities in orangutans (Pongo abelii and Pongo pygmaeus). Intelligence 74:3–11. https://doi.org/10.1016/j.intell.2018.10.008

    Article  Google Scholar 

  21. Day LB, Crews D, Wilczynski W (2001) Effects of medial and dorsal cortex lesions on spatial memory in lizards. Behav Brain Res 118:27–42. https://doi.org/10.1016/S0166-4328(00)00308-9

    Article  PubMed  CAS  Google Scholar 

  22. Delarue EM, Kerr SE, Rymer TL (2020) Habitat and sex effects on behaviour in fawn-footed mosaic-tailed rats (Melomys cervinipes). Aust Mammal. https://doi.org/10.1071/AM19065

    Article  Google Scholar 

  23. Dukas R (2004) Evolutionary biology of animal cognition. Annu Rev Ecol Evol Syst 35:347–374. https://doi.org/10.1146/annurev.ecolsys.35.112202.130152

    Article  Google Scholar 

  24. Euston DR, Gruber AJ, McNaughton BL (2012) The role of medial prefrontal cortex in memory and decision making. Neuron 76:1057–1070. https://doi.org/10.1016/j.neuron.2012.12.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Friard O, Gamba M (2016) BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol Evol 7:1325–1330. https://doi.org/10.1111/2041-210X.12584

    Article  Google Scholar 

  26. Fuster JM (2002) Frontal lobe and cognitive development. J Neurocytol 31:373–385. https://doi.org/10.1023/A:1024190429920

    Article  PubMed  Google Scholar 

  27. Gasbarri A, Pompili A, Packard MG, Tomaz C (2014) Habit learning and memory in mammals: behavioral and neural characteristics. Neurobiol Learn Mem 114:198–208. https://doi.org/10.1016/j.nlm.2014.06.010

    Article  PubMed  Google Scholar 

  28. Gelfo F, Mandolesi L, Serra L, Sorrentino G, Caltagirone C (2018) The neuroprotective effects of experience on cognitive functions: evidence from animal studies on the neurobiological bases of brain reserve. Neuroscience 370:218–235. https://doi.org/10.1016/j.neuroscience.2017.07.065

    Article  PubMed  CAS  Google Scholar 

  29. Giurfa M (2013) Cognition with few neurons: higher-order learning in insects. Trends Neurosci 36:285–294. https://doi.org/10.1016/j.tins.2012.12.011

    Article  PubMed  CAS  Google Scholar 

  30. Goosem M, Marsh H (1997) Fragmentation of a small-mammal community by a powerline corridor through tropical rainforest. Wildl Res 24:613–629. https://doi.org/10.1071/WR96063

    Article  Google Scholar 

  31. Greggor AL, Thornton A, Clayton NS (2015) Neophobia is not only avoidance: improving neophobia tests by combining cognition and ecology. Curr Opin Behav Sci 6:82–89. https://doi.org/10.1016/j.cobeha.2015.10.007

    Article  Google Scholar 

  32. Griffin AS, Guez D (2014) Innovation and problem solving: a review of common mechanisms. Behav Proc 109:121–134. https://doi.org/10.1016/j.beproc.2014.08.027

    Article  Google Scholar 

  33. Griffin AS, Guez D, Lermite F, Patience M (2013) Tracking changing environments: innovators are fast, but not flexible learners. PLoS One 8:e84907. https://doi.org/10.1371/journal.pone.0084907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Guenther A, Brust V (2017) Individual consistency in multiple cognitive performance: behavioural versus cognitive syndromes. Anim Behav 130:119–131. https://doi.org/10.1016/j.anbehav.2017.06.011

    Article  Google Scholar 

  35. Hodges JR, Spatt J, Patterson K (1999) “What” and “how”: evidence for the dissociation of object knowledge and mechanical problem solving skills in the human brain. PNAS 96:9444–9448. https://doi.org/10.1073/pnas.96.16.9444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hopkins WD, Russell JL, Schaeffer J (2014) Chimpanzee intelligence is heritable. Curr Biol 24:1649–1652. https://doi.org/10.1016/j.cub.2014.05.076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Isden J, Panayi C, Dingle C, Madden J (2013) Performance in cognitive and problem solving tasks in male spotted bowerbirds does not correlate with mating success. Anim Behav 86:829–838. https://doi.org/10.1016/j.anbehav.2013.07.024

    Article  Google Scholar 

  38. Joëls M, Pu Z, Wiegert O, Oitzl MS, Krugers HJ (2006) Learning under stress: how does it work? Trends Cogn Sci 10:152–158. https://doi.org/10.1016/j.tics.2006.02.002

    Article  PubMed  Google Scholar 

  39. Krasheninnikova A, Berardi R, Lind MA, O’Neill L, von Bayern AM (2019) Primate cognition test battery in parrots. Behav 156:721–761. https://doi.org/10.1163/1568539X-0003549

    Article  Google Scholar 

  40. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82:1–26. https://doi.org/10.18637/jss.v082.i13

    Article  Google Scholar 

  41. Leduc AO, Roh E, Breau C, Brown GE (2007) Learned recognition of a novel odour by wild juvenile Atlantic salmon, Salmo salar, under fully natural conditions. Anim Behav 73:471–477. https://doi.org/10.1016/j.anbehav.2006.09.005

    Article  Google Scholar 

  42. Lefebvre L, Reader SM, Sol D (2004) Brains, innovations and evolution in birds and primates. Brain Behav 63:233–246. https://doi.org/10.1159/000076784

    Article  Google Scholar 

  43. Liu D, Diorio J, Day J, Franscis DD, Meaney MJ (2000) Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat Neurosci 3:799–806. https://doi.org/10.1038/77702

    Article  PubMed  CAS  Google Scholar 

  44. Matzel LD, Han YR, Grossman H, Karnik MS, Patel D, Scott N, Specht SM, Gandhi CC (2003) Individual differences in the expression of a “general” learning ability in mice. J Neurosci 23:6423–6433. https://doi.org/10.1523/JNEUROSCI.23-16-06423.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Matzel LD, Wass C, Kolata S (2011) Individual differences in animal intelligence: learning, reasoning, selective attention and inter-species conservation of a cognitive trait. Int J Comp Psychol 24:36–59

    Google Scholar 

  46. Mazza V, Eccard JA, Zaccaroni M, Jacob J, Dammhahn M (2018) The fast and the flexible: cognitive style drives individual variation in cognition in a small mammal. Anim Behav 1:119–132. https://doi.org/10.1016/j.anbehav.2018.01.011

    Article  Google Scholar 

  47. McLay RN, Freeman SM, Zadina JE (1998) Chronic corticosterone impairs memory performance in the Barnes maze. Physiol Behav 63:933–937. https://doi.org/10.1016/S0031-9384(97)00529-5

    Article  PubMed  CAS  Google Scholar 

  48. Mendelson TC (2015) Distinguishing perceptual and conceptual levels of recognition at group boundaries. Evol Ecol 29:205–215. https://doi.org/10.1007/s10682-014-9748-1

    Article  Google Scholar 

  49. Moore L, Burnett S (2008) Fawn-footed melomys, Melomys cervinipes. Mammals of Australia. New Holland Publishers, Limited, Sydney, Australia

    Google Scholar 

  50. Morand-Ferron J (2017) Why learn? The adaptive value of associative learning in wild populations. Curr Opin Behav Sci 16:73–79. https://doi.org/10.1016/j.cobeha.2017.03.008

    Article  Google Scholar 

  51. National Health and Medical Research Council (NHMRC) (2013) Australian code for the care and use of animals for scientific purposes, 8th edn. National Health and Medical Research Council, Canberra, ACT

    Google Scholar 

  52. Paulling K, Wilson D, Rymer TL (2019) Olfactory recognition of snake cues by fawn-footed mosaic-tailed rats Melomys cervinipes. Behavior 1:1–19. https://doi.org/10.1163/1568539X-00003563

    Article  Google Scholar 

  53. Preiszner B, Papp S, Pipoly I, Seress G, Vincze E, Liker A, Bókony V (2017) problem solving performance and reproductive success of great tits in urban and forest habitats. Anim Cog 20:53–63. https://doi.org/10.1007/s10071-016-1008-z

    Article  Google Scholar 

  54. Rader R, Krockenberger A (2006) Three-dimensional use of space by a tropical rainforest rodent, Melomys cervinipes, and its implications for foraging and home-range size. Wildl Res 33:577–582. https://doi.org/10.1071/WR04117

    Article  Google Scholar 

  55. Raine NE, Chittka L (2008) The correlation of learning speed and natural foraging success in bumble-bees. Philos Trans R Soc Lond B Biol Sci 275:803–808. https://doi.org/10.1098/rspb.2007.1652

    Article  Google Scholar 

  56. Reader SM, Laland KN (2001) Primate innovation: sex, age and social rank differences. Int J Primatol 22:787–805. https://doi.org/10.1023/A:1012069500899

    Article  Google Scholar 

  57. Rodriguez F, Durán E, Gómez A, Ocana FM, Alvarez E, Jiménez-Moya F, Broglio C, Salas C (2005) Cognitive and emotional functions of the teleost fish cerebellum. Brain Res Bull 66:365–370. https://doi.org/10.1016/j.brainresbull.2004.11.026

    Article  PubMed  CAS  Google Scholar 

  58. Rowe C, Healy SD (2014) Measuring variation in cognition. Behav Ecol 25:1287–1292. https://doi.org/10.1093/beheco/aru090

    Article  Google Scholar 

  59. Rowell MK, Rymer TL (2020a) Rodentia Cognition. Encyclopedia of animal cognition and behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-47829-6_796-1

    Chapter  Google Scholar 

  60. Rowell MK, Rymer TL (2020b) Innovation in a native Australian rodent, the fawn-footed mosaic-tailed rat (Melomys cervinipes). Anim Cog 23:301–310. https://doi.org/10.1007/s10071-019-01334-6

    Article  Google Scholar 

  61. Rowell MK, Rymer TL (2021) Exploration influences problem solving in the fawn-footed mosaic-tailed rat (Melomys cervinipes). Ethology 127:592–604. https://doi.org/10.1111/eth.13166

    Article  Google Scholar 

  62. Rowell MK (2016) Exploring the nexus between environment, physiology, behaviour and cognition: a test using Melomys cervinipes. Honours thesis, James Cook University.

  63. Salvanes AGV, Moberg O, Ebbesson LO, Nilsen TO, Jensen KH, Braithwaite VA (2013) Environmental enrichment promotes neural plasticity and cognitive ability in fish. Proc Royal Soc B 280:20131331. https://doi.org/10.1098/rspb.2013.1331

    Article  Google Scholar 

  64. Shaw RC, Boogert NJ, Clayton NS, Burns KC (2015) Wild psychometrics: evidence for ‘general’ cognitive performance in wild New Zealand robins, Petroica longipes. Anim Behav 109:101–111. https://doi.org/10.1016/j.anbehav.2015.08.001

    Article  Google Scholar 

  65. Shettleworth SJ (2003) Memory and hippocampal specialization in food-storing birds: challenges for research on comparative cognition. Brain Behav 62:108–116. https://doi.org/10.1159/000072441

    Article  Google Scholar 

  66. Shettleworth SJ (2010) Clever animals and killjoy explanations in comparative psychology. Trends Cogn Sci 14:477–481. https://doi.org/10.1016/j.tics.2010.07.002

    Article  PubMed  Google Scholar 

  67. Shumaker RW, Walkup KR, Beck BB (2011) Animal tool behavior: the use and manufacture of tools by animals. JHU Press, Baltimore

    Google Scholar 

  68. Tebbich S, Sterelny K, Teschk I (2010) The tale of the finch: adaptive radiation and behavioural flexibility. Philos Trans R Soc Lond B Biol Sci 365:1099–1109. https://doi.org/10.1098/rstb.2009.0291

    Article  PubMed  PubMed Central  Google Scholar 

  69. Thornton A, Samson J (2012) Innovative problem solving in wild meerkats. Anim Behav 83:1459–1468. https://doi.org/10.1016/j.anbehav.2012.03.018

    Article  Google Scholar 

  70. Tronel S, Sara SJ (2002) Mapping of olfactory memory circuits: region-specific c-fos activation after odor-reward associative learning or after its retrieval. Learn Mem 9:105–111. https://doi.org/10.1101/lm.47802

    Article  PubMed  PubMed Central  Google Scholar 

  71. van Horik JO, Madden JR (2016) A problem with problem solving: motivational traits, but not cognition, predict success on novel operant foraging tasks. Anim Behav 114:189–198. https://doi.org/10.1016/j.anbehav.2016.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla, J (2017) Package ‘corrplot’. https://cran.r-project.org/web/packages/corrplot/index.html.

  73. Wood DH (1971) The ecology of Rattus fuscipes and Melomys cervinipes (Rodentia: Muridae) in a south-east Queensland rain forest. Aust J Zool 19:371–392. https://doi.org/10.1071/ZO9710371

    Article  Google Scholar 

  74. Yom-Tov Y (1985) The reproductive rates of Australian rodents. Oecologia 66:250–255. https://doi.org/10.1007/BF00379862

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Ben Hirsch for providing helpful comments on the manuscript. We would also like to thank the Australian Government for providing a Research Training Program Scholarship to MKR, and James Cook University College of Science and Engineering for funding this project. We are grateful to Nicholas Anderson for his help in conducting testing, and Natasha Schulz, Emmeline Norris, Holly Farnan, Bianca Ligasacchi, Joshua McNamara, Michelle Knott, and Shania Bolen for their assistance in maintaining the mosaic-tailed rat colony.

Funding

This research was supported by James Cook University College of Science and Engineering.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Misha K. Rowell.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest or competing interests.

Ethics approval

This research was approved by the Animal Ethics Screening Committee of James Cook University (clearance number: A2539).

Consent to participate

N/A.

Consent for publication

The authors consent to this work being published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 11 KB)

Supplementary file2 (DOCX 13 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rowell, M.K., Rymer, T.L. Memory enhances problem solving in the fawn-footed mosaic-tailed rat Melomys cervinipes. Anim Cogn (2021). https://doi.org/10.1007/s10071-021-01556-7

Download citation

Keywords

  • Behavioural flexibility
  • Individual variation
  • Innovation
  • Learning
  • Recognition