Skip to main content

Planning actions with a magnetic tool: how initial tool orientation and number of functional ends influence motor planning abilities in capuchin monkeys (Sapajus spp.)

Abstract

The way in which animals grasp objects to perform subsequent action execution allows studying their anticipatory abilities. We examined whether 11 capuchin monkeys (Sapajus spp.) were able to prospectively grasp a magnetic dowel to use it as a tool to retrieve a baited metallic container from a plexiglas box placed in front of them. We investigated whether and how initial dowel orientation (horizontal vs vertical) affected grasping and using the dowel to retrieve the container in two testing conditions: (1) 2-FE condition in which the dowel had two functional magnetic ends; (2) 1-FE condition in which the dowel had only one functional magnetic end. In the 2-FE condition, capuchins had to take into account the initial dowel orientation since both ends were functional, whereas in the 1-FE condition capuchins had also to take into account the initial functional end position when grasping the dowel. Capuchins were trained to grasp the dowel to put one functional end in contact with the metallic container. However, they did not learn to associate the functional end of the 1-FE dowel to successful retrieval. Capuchins showed better anticipatory planning (1) in 2-FE than in 1-FE condition and (2) when the dowel was initially positioned on the horizontal plane than on the vertical one. Moreover, hand preferences affected planning in the 1-FE condition. Results were discussed within the frameworks of primates’ abilities to use abstract cues and on their abilities to process functional features and spatial cues and to perform mental rotations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

The raw data that support the main findings of the present study are available in the Supplementary materials.

References

  1. Adalbjornsson CF, Fischman MG, Rudisill ME (2008) The end-state comfort effect in young children. Res Q Exerc Sport 79:36–41. https://doi.org/10.1080/02701367.2008.10599458

    Article  PubMed  Google Scholar 

  2. Bongers RM, Smitsman AW, Michaels CF (2003) Geometries and dynamics of a rod determine how it is used for reaching. J Mot Behav 35:4–22. https://doi.org/10.1080/00222890309602117

    Article  PubMed  Google Scholar 

  3. Chapman KM, Weiss DJ, Rosenbaum DA (2010) Evolutionary roots of motor planning: the end-state comfort effect in lemurs. J Comp Psychol 124:229–232. https://doi.org/10.1037/a0018025

    Article  PubMed  Google Scholar 

  4. Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79:1117–1123. https://doi.org/10.1152/jn.1998.79.2.1117

    CAS  Article  PubMed  Google Scholar 

  5. Claxton LJ, McCarty ME, Keen R (2009) Self-directed action affects planning in tool-use tasks with toddlers. Infant Behav Dev 32:230–233. https://doi.org/10.1016/j.infbeh.2008.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  6. Comalli DM, Keen R, Abraham ES, Foo VJ, Lee M, Adolph KE (2016) The development of tool use: planning for end-state comfort. Dev Psychol 52:1878–1892. https://doi.org/10.1037/dev0000207

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cox RFA, Smitsman AW (2006) Action planning in young children’s tool use. Dev Sci 9:628–641. https://doi.org/10.1111/j.1467-7687.2006.00541.x

    Article  PubMed  Google Scholar 

  8. Fagot J, Vauclair J (1991) Manual laterality in nonhuman primates: a distinction between handedness and manualspecialization. Psychol Bull 109:76–89. https://doi.org/10.1037/0033-2909.109.1.76

    CAS  Article  PubMed  Google Scholar 

  9. Fragaszy DM, Cummins-Sebree SE (2005) Relational spatial reasoning by a nonhuman: the example of capuchin monkeys. Behav Cogn Neurosci Rev 4:282–306. https://doi.org/10.1177/1534582306286573

    Article  PubMed  Google Scholar 

  10. Fragaszy DM, Eshchar Y (2017) Tool use in nonhuman primates: natural history, ontogenetic development and social supports for learning. In: Kaas JH (ed) Evolution of Nervous Systems. Academic Press, Oxford, pp 317–328

    Chapter  Google Scholar 

  11. Fragaszy DM, Stone BW, Scott NM, Menzel C (2011) How tufted capuchin monkeys (Cebus apella spp) and common chimpanzees (Pan troglodytes) align objects to surfaces: Insights into spatial reasoning and implications for tool use. Am J Primatol 73:1012–1030. https://doi.org/10.1002/ajp.20966

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fragaszy DM, Kuroshima H, Stone BW (2015) “Vision for Action” in young children aligning multi-featured objects: development and comparison with nonhuman primates. PLoS ONE 10:e0140033. https://doi.org/10.1371/journal.pone.0140033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Frey SH, Povinelli DJ (2012) Comparative investigations of manual action representations: evidence that chimpanzees represent the costs of potential future actions involving tools. Philos Trans R Soc Lond B Biol Sci 367:48–58. https://doi.org/10.1098/rstb.2011.0189

    Article  PubMed  PubMed Central  Google Scholar 

  14. Friard O, Gamba M (2016) BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol Evol 7:1325–1330. https://doi.org/10.1111/2041-210X.12584

    Article  Google Scholar 

  15. Fujita K, Sato Y, Kuroshima H (2011) Learning and generalization of tool use by tufted capuchin monkeys (Cebus apella) in tasks involving three factors: reward, tool, and hindrance. J Exp Psychol Anim Behav Process 37:10–19. https://doi.org/10.1037/a0020274

    Article  PubMed  Google Scholar 

  16. Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  17. Harris LJ, Carlson DF (1993) Hand preference for visually-guided reaching in human infants and adults. In: Ward JP, Hopkins WD (eds) Primate laterality: current behavioral evidence of primate asymmetries. Springer, New York, pp 285–305. https://doi.org/10.1007/978-1-4612-4370-0_13

    Chapter  Google Scholar 

  18. Hopkins WD (1995) Hand preferences for a coordinated bimanual task in 110 chimpanzees (Pan troglodytes): cross sectional analysis. J Comp Psychol 109:291–297. https://doi.org/10.1037/0735-7036.109.3.291

    CAS  Article  PubMed  Google Scholar 

  19. Jung WP, Kahrs BA, Lockman JJ (2015) Manual action, fitting, and spatial planning: relating objects by young children. Cognition 134:128–139. https://doi.org/10.1016/j.cognition.2014.09.004

    Article  PubMed  Google Scholar 

  20. Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, Ungerleider LG (1998) The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci USA 95:861–868. https://doi.org/10.1073/pnas.95.3.861

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. la Cour LT, Stone BW, Hopkins W, Menzel C, Fragaszy D (2014) What limits tool use in nonhuman primates? Insights from tufted capuchin monkeys (Sapajus spp) and chimpanzees (Pan troglodytes) aligning three-dimensional objects to a surface. Anim Cogn 17:113–125. https://doi.org/10.1007/s10071-013-0643-x

    Article  PubMed  Google Scholar 

  22. Mangalam M, Fragaszy DM (2015) Wild bearded capuchin monkeys crack nuts dexterously. Curr Biol 25:1334–1339. https://doi.org/10.1016/j.cub.2015.03.035

    CAS  Article  PubMed  Google Scholar 

  23. Mannu M, Ottoni EB (2009) The enhanced tool-kit of two groups of wild bearded capuchin monkeys in the Caatinga: tool making, associative use, and secondary tools. Am J Primatol 71:242–251. https://doi.org/10.1002/ajp.20642

    Article  PubMed  Google Scholar 

  24. Manrique HM, Call J, Visalberghi E, Sabbatini G (2021) Great apes (Pan troglodytes, Pan Paniscus, Pongo abelii) exploit better the information of failure than capuchin monkeys (Sapajus spp.) when selecting tools to solve the same foraging problem. J Comp Psychol 2:10. https://doi.org/10.1037/com0000242

    Article  Google Scholar 

  25. McCarty ME, Clifton RK, Collard RR (1999) Problem solving in infancy: The emergence of an action plan. Dev Psychol 35:1091–1101. https://doi.org/10.1037//0012-1649.35.4.1091

    CAS  Article  PubMed  Google Scholar 

  26. McCarty ME, Clifton RK, Collard RR (2001) The beginnings of tool use by infants and toddlers. Infancy 2:233–256. https://doi.org/10.1207/S15327078IN0202_8

    Article  Google Scholar 

  27. Muellbacher W, Ziemann U, Boroojerdi B, Cohen L, Hallett M (2001) Role of the human motor cortex in rapid motor learning. Exp Brain Res 136:431–438. https://doi.org/10.1007/s002210000614

    CAS  Article  PubMed  Google Scholar 

  28. Nelson E, Berthier NE, Metevier CM, Novak MA (2011) Evidence for motor planning in monkeys: rhesus macaques select efficient grips when transporting spoons. Dev Sci 14:822–831. https://doi.org/10.1111/j.1467-7687.2010.01030.x

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nudo RJ, Milliken GW (1996) Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol 75:2144–2149. https://doi.org/10.1152/jn.1996.75.5.2144

    CAS  Article  PubMed  Google Scholar 

  30. Phillips KA, Thompson CR (2013) Hand preference for tool-use in capuchin monkeys (Cebus apella) is associated with asymmetry of the primary motor cortex. Am J Primatol 75:435–440. https://doi.org/10.1002/ajp.2207

    Article  PubMed  Google Scholar 

  31. Potì P (2000) Aspects of spatial cognition in capuchins (Cebus apella): frames of reference and scale of space. Anim Cogn 3:69–77. https://doi.org/10.1007/s100710000062

    Article  Google Scholar 

  32. Rat-Fisher L, O’Regan JK, Fagard J (2013) Handedness in infants’ tool use. Dev Psychobiol 55:860–868. https://doi.org/10.1002/dev.21078

    Article  Google Scholar 

  33. Rosenbaum DA, Marchak F, Barnes J, Vaughan J, Slotta J, Jorgensen M (1990) Constraints for action selection: overhand versus underhand grips. In: Jeannerod M (ed) Attention and performance XIII: motor representation and control. Erlbaum, Hillsdale, pp 321–342

    Google Scholar 

  34. Rosenbaum DA, Chapman KM, Weigelt M, Weiss DJ, van der Wel R (2012) Cognition, action, and object manipulation. Psychol Bull 138:924–946. https://doi.org/10.1037/a0027839

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rosenbaum DA, Chapman KM, Coelho CJ, Gong L, Studenka BE (2013) Choosing actions. Front Psychol 4:273. https://doi.org/10.3389/fpsyg.2013.00273

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rosenbaum DA, Herbort O, Van der Wel R, Weiss DJ (2014) What’s in a grasp. Am Sci 102:366–373. https://doi.org/10.1511/2014.110.366

    Article  Google Scholar 

  37. Sabbatini G, Truppa V, Hribar A, Gambetta B, Call J, Visalberghi E (2012) Understanding the functional properties of tools: chimpanzees (Pan troglodytes) and capuchin monkeys (Cebus apella) attend to tool features differently. Anim Cogn 15:577–590. https://doi.org/10.1007/s10071-012-0486-x

    Article  PubMed  Google Scholar 

  38. Sabbatini G, Meglio G, Truppa V (2016) Motor planning in different grasping tasks by capuchin monkeys (Sapajus spp.). Behav Brain Res 312:201–211. https://doi.org/10.1016/j.bbr.2016.06.010

    Article  PubMed  Google Scholar 

  39. Short MW, Cauraugh JH (1999) Precision hypothesis and the end-state comfort effect. Acta Psychol 100:243–252. https://doi.org/10.1016/s0001-6918(98)00020-1

    CAS  Article  Google Scholar 

  40. Shumaker RW, Walkup KR, Beck B (2011) Animal tool behavior. The use and manufacture of tools by animals. Johns Hopkins University Press

    Google Scholar 

  41. Shutts K, Omkloo H, von Hofsten C, Keen R, Spelke ES (2009) Young children’s representations of spatial and functional relations between objects. Child Dev 80:1612–1627. https://doi.org/10.1111/j.1467-8624.2009.01357.x

    Article  PubMed  PubMed Central  Google Scholar 

  42. Smitsman AW (1997) The development of tool use: changing boundaries between organism and environment. In: Dent-Read C, Zukow-Goldring P (eds) Evolving explanations of development: ecological approaches to organism–environment systems. American Psychological Association, Washington, pp 301–329. https://doi.org/10.1037/10265-008

    Chapter  Google Scholar 

  43. Spinozzi G, Truppa V (1999) Hand preferences in different tasks by tufted capuchins (Cebus apella). Int J Primatol 20:827–849. https://doi.org/10.1023/A:1020870317124

    Article  Google Scholar 

  44. Spinozzi G, Truppa V (2002) Problem-solving strategies and hand preferences for a multicomponent task by tufted capuchins (Cebus apella). Int J Primatol 23:621–638. https://doi.org/10.1023/A:1014977818853

    Article  Google Scholar 

  45. Spinozzi G, Castorina MG, Truppa V (1998) Hand preferences in unimanual and coordinated-bimanual tasks by tufted capuchin monkeys (Cebus apella). J Comp Psychol 112:183–191. https://doi.org/10.1037/0735-7036.112.2.183

    Article  Google Scholar 

  46. Spinozzi G, Truppa V, Laganà T (2004) Grasping behavior in tufted capuchin monkeys (Cebus apella): grip types and manual laterality for picking up a small food item. Am J Phys Anthropol 125:30–41. https://doi.org/10.1002/ajpa.10362

    Article  PubMed  Google Scholar 

  47. Spinozzi G, Lagana T, Truppa V (2007) Hand use by tufted capuchins (Cebus apella) to extract a small food item from a tube: digit movements, hand preference, and performance. Am J Primatol 69:336–352. https://doi.org/10.1002/ajp.20352

    CAS  Article  PubMed  Google Scholar 

  48. Steenbergen B, Van der Kamp J, Smithsman AW, Carson RG (1997) Spoon handling in two-to-four-year-old children. Ecol Psychol 9:113–129. https://doi.org/10.1207/s15326969eco0902_1

    Article  Google Scholar 

  49. Thompson RKR, Oden DL (2000) Categorical perception and conceptual judgments by nonhuman primates: The paleological monkey and the analogical ape. Cogn Sci 24:363–396. https://doi.org/10.1016/S0364-0213(00)00029-X

    Article  Google Scholar 

  50. Truppa V, Mortari EP, Garofoli D, Privitera S, Visalberghi E (2011) Same/different concept learning by capuchin monkeys in matching-to-sample tasks. PLoS ONE 6:e23809. https://doi.org/10.1371/journal.pone.0023809

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Truppa V, Spinozzi G, Laganà T, Piano Mortari E, Sabbatini G (2016) Versatile grasping ability in power-grip actions by tufted capuchin monkeys (Sapajus spp.). Am J Phys Anthropol 159:63–72. https://doi.org/10.1002/ajpa.22836

    Article  PubMed  Google Scholar 

  52. Truppa V, Carducci P, Sabbatini G (2019) Object grasping and manipulation in capuchin monkeys (genera Cebus and Sapajus). Biol J Linn Soc 127:563–582. https://doi.org/10.1093/biolinnean/bly131

    Article  Google Scholar 

  53. Truppa V, Sabbatini G, Izar P, Fragaszy DM, Visalberghi E (2020) Anticipating future actions: motor planning improves with age in wild bearded capuchin monkeys (Sapajus libidinosus). Dev Sci. https://doi.org/10.1111/desc.13077

    Article  Google Scholar 

  54. Van Hof P, Van der Kamp J, Savelsbergh GJP (2002) The relation of unimanual and bimanual reaching in crossing the midline. Child Dev 73:1353–1362. https://doi.org/10.1111/1467-8624.00476

    Article  PubMed  Google Scholar 

  55. Van Leeuwen L, Smitsman AW, Van Leeuwen C (1994) Affordances, perceptual complexity, and the development of tool use. J Exp Psychol Hum Percept Perform 20:174–191. https://doi.org/10.1037//0096-1523.20.1.174

    Article  PubMed  Google Scholar 

  56. Visalberghi E, Limongelli L (1996) Acting and understanding: Tool use revisited through the minds of capuchin monkeys. In: Russon A, Bard K, Parker S (eds) Reaching into thought. The minds of the great apes. Cambridge University Press, Cambridge, pp 57–79

    Google Scholar 

  57. Visalberghi E, Fragaszy D (2012) What is challenging about tool use? The capuchin’s perspective. In: Wasserman EA, Zentall TR (eds) The Oxford handbook of comparative cognition. Oxford University Press, New York, pp 777–799. https://doi.org/10.1093/oxfordhb/9780195392661.013.0039

    Chapter  Google Scholar 

  58. Visalberghi E, Sabbatini G, Taylor AH, Hunt GR (2017) Cognitive insights from tool use in nonhuman animals. In: Call J, Burghardt GM, Pepperberg IM, Snowdon CT, Zentall T (eds) APA handbook of comparative psychology: perception, learning, and cognition. American Psychological Association, Washington, pp 673–701. https://doi.org/10.1037/0000012-030

    Chapter  Google Scholar 

  59. Wagman JB, Carello C (2001) Affordances and inertial constraints on tool use. Ecol Psychol 13:173–195. https://doi.org/10.1207/S15326969ECO1303_1

    Article  Google Scholar 

  60. Wagman JB, Carello C (2003) Haptically creating affordances: the user-tool interface. J Exp Psychol Appl 9:175–186. https://doi.org/10.1037/1076-898x.9.3.175

    Article  PubMed  Google Scholar 

  61. Wakita M (2008) Orientation perception in rhesus monkeys (Macaca mulatta). Anim Cogn 11:535–545. https://doi.org/10.1007/s10071-008-0146-3

    Article  PubMed  Google Scholar 

  62. Wasserman E, Castro L, Fagot J (2017) Relational thinking in animals and humans: from percepts to concepts. In: Call J, Burghardt GM, Pepperberg IM, Snowdon CT, Zentall T (eds) APA handbook of comparative psychology: perception, learning, and cognition. American Psychological Association, Washington, pp 359–384. https://doi.org/10.1037/0000012-017

    Chapter  Google Scholar 

  63. Weiss DJ, Wark JD, Rosenbaum DA (2007) Monkey see, monkey plan, monkey do. The end-state comfort effect in cotton-top tamarins (Saguinus oedipus). Psychol Sci 18:1063–1068. https://doi.org/10.1111/j.1467-9280.2007.02026.x

    Article  PubMed  Google Scholar 

  64. Wunsch K, Henning A, Aschersleben G, Weigelt M (2013) A systematic review of the end-state comfort effect in normally developing children and in children with developmental disorders. J Motor Learn Dev 1:59–76. https://doi.org/10.1123/jmld.1.3.59

    Article  Google Scholar 

  65. Zander SL, Judge PG (2015) Brown capuchin monkeys (Sapajus apella) plan their movements on a grasping task. J Comp Psychol 129:181–188. https://doi.org/10.1037/a0038850

    Article  PubMed  Google Scholar 

  66. Zander SL, Weiss DJ, Judge PG (2013) The interface between morphology and action planning: a comparison of two species of New World monkeys. Anim Behav 86:1251–1258. https://doi.org/10.1016/j.anbehav.2013.09.028

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Massimiliano Bianchi e Simone Catarinacci, keepers of the Primate Center of ISTC-CNR in Rome, for help with animal testing, Luigi Carducci for technical support and Isabella Anastasio, Laura Petruccelli and Paola Carducci for help with data collection. We thank the Fondazione Bioparco for hosting the Primate Center where the experiments were carried out. S.P. acknowledges EVOzoica Association and G.M. acknowledges ISTC-CNR for their financial support.

Funding

S.P. received financial support from EVOzoica Association (research Grant “INCIPIT 2019/02”) and G.M. received financial support from ISTC-CNR (Grant n. ISTC.126.078.BS.25-2016).

Author information

Affiliations

Authors

Contributions

GS and VT contributed to the study conception and design. Material preparation and data collection were performed by all the authors. Analyses were performed by GS and VT. The first draft of the manuscript was written by GS, and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Gloria Sabbatini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

The research on capuchins was conducted under approval from the Italian Health Ministry (Central Direction for the Veterinary Service, approval n. DM132/2014-C to V. Truppa and n. 57/2015-PR to G. Sabbatini). The housing conditions and experimental procedures were in accordance with the EU Directive 2010/63/EU for animal experiments. Moreover, our study complies with the ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Video 1. Sandokan, a male capuchin, dealing with 4 test trials of the 1-FE condition mp4 116108 KB

Video 2. Rame, a female capuchin, dealing with 2 test trials of the 2-FE condition mp4 65932 KB

10071_2021_1554_MOESM1_ESM.doc

SM1. Supplementary materials regarding the illustrations of trials administered to capuchins in Training 1 and 2, the raw data of the main results, the results about the implementation of the not fully planned actions and about the forearm postures adopted for grasping the dowel 1998 KB

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sabbatini, G., Pallotti, S., Meglio, G. et al. Planning actions with a magnetic tool: how initial tool orientation and number of functional ends influence motor planning abilities in capuchin monkeys (Sapajus spp.). Anim Cogn (2021). https://doi.org/10.1007/s10071-021-01554-9

Download citation

Keywords

  • Action planning
  • Tool use
  • Functional features
  • Abstract cues
  • Spatial cognition
  • Primates