Skip to main content
Log in

Positional inference in rhesus macaques

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Understanding how organisms make transitive inferences is critical to understanding their general ability to learn serial relationships. In this context, transitive inference (TI) can be understood as a specific heuristic that applies broadly to many different serial learning tasks, which have been the focus of hundreds of studies involving dozens of species. In the present study, monkeys learned the order of 7-item lists of photographic stimuli by trial and error, and were then tested on “derived” lists. These derived test lists combined stimuli from multiple training lists in ambiguous ways, sometimes changing their order relative to training. We found that subjects displayed strong preferences when presented with novel test pairs, even when those pairs were drawn from different training lists. These preferences were helpful when test pairs had an ordering congruent with their ranks during training, but yielded consistently below-chance performance when pairs had an incongruent order relative to training. This behavior can be explained by the joint contributions of transitive inference and another heuristic that we refer to as “positional inference.” Positional inferences play a complementary role to transitive inferences in facilitating choices between novel pairs of stimuli. The theoretical framework that best explains both transitive and positional inferences is a spatial model that represents both the position of each stimulus and its uncertainty. A computational implementation of this framework yields accurate predictions about both correct responses and errors on derived lists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alvarado MC, Bachevalier J (2005) Comparison of the effects of damage to the perirhinal and parahippocampal cortex on transverse patterning and location memory in rhesus macaques. J Neurosci 25:1599–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond AB, Wei CA, Kamil AC (2010) Cognitive representation in transitive inference: a comparison of four corvid species. Behav Proc 85:283–295

    Article  Google Scholar 

  • Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, Brubaker MA, Guo J, Li P, Riddell A (2017) Stan: a probabilistic programming language. J Stat Softw 76:1–32

    Article  Google Scholar 

  • Chen S, Swartz KB, Terrace HS (1997) Knowledge of the ordinal position of list items in rhesus monkeys. Psychol Sci 8:80–86

    Article  Google Scholar 

  • Couvillon PA, Bitterman ME (1996) Transverse patterning in pigeons. Anim Learn Behav 24:410–422

    Article  Google Scholar 

  • D’Amato MR, Colombo M (1990) The symbolic distance effect in monkeys (Cebus apella). Anim Learn Behav 18:133–140

    Article  Google Scholar 

  • Daniels CW, Laude JR, Zentall TR (2014) Transitive inference by pigeons: does the geometric presentation of the stimuli make a difference? Anim Cogn 17:973–981

    Article  PubMed  Google Scholar 

  • Ebbinghaus H (1885|1913) Memory: a contribution to experimental psychology. HA Ruger (Trans). Teachers College, Columbia University, Bureau of Publications

  • Ebitz RB, Sleezer BJ, Jedema HP, Bradberry CW, Hayden BJ (2019) Tonic exploration governs both flexibility and lapses. PLOS Comput Biol 15:e1007475

    Article  PubMed  PubMed Central  Google Scholar 

  • Gazes RP, Chee NW, Hampton RR (2012) Cognitive mechanisms for transitive inference performance in rhesus monkeys: measuring the influence of associative strength and inferred order. J Exp Psychol Anim Behav Process 38:331–345

    Article  PubMed  PubMed Central  Google Scholar 

  • Gazes RP, Lazareva OF, Bergene CN, Hampton RR (2014) Effects of spatial training on transitive inference performance in humans and rhesus monkeys. J Exp Psychol Anim Learn Cognit 40:477–489

    Article  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2014) Bayesian data analysis, 3rd edn. CRC Press

    Google Scholar 

  • Gross WL, Greene AJ (2007) Analogical inference: the role of awareness in abstract learning. Memory 15:838–844

    Article  PubMed  Google Scholar 

  • Heino MTJ, Vuorre M, Hankonen N (2018) Bayesian evaluation of behavioral change interventions: a brief introduction and a practical example. Health Psychol Behav Med 6:49–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Hintze JL, Nelson RD (1998) Violin plots: a box plot-density trace synergism. Am Stat 52:181–184

    Google Scholar 

  • Hotta T, Ueno K, Hataji Y, Kuroshima H, Fujita K, Kohda M (2020) Transitive inference in cleaner wrasses (Labroides dimidiatus). PLoS ONE 15:e0237817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs LF (2006) From movement to transitivity: the role of hippocampal parallel maps in configural learning. Rev Neurosci 17:99–109

    Article  PubMed  Google Scholar 

  • Jaro MA (1989) Advances in record linkage methodology as applied to the 1985 census of Tampa Florida. J Am Stat Assoc 84:414–420

    Article  Google Scholar 

  • Jensen G (2017) Serial learning. In: Call J, Burghardt GM, Pepperberg IM, Snowdon CT, Zentall T (eds) APA handbook of comparative psychology: vol. 2, perception, learning, and cognition. American Psychological Association, pp 385–409

    Chapter  Google Scholar 

  • Jensen G, Altschul D, Danly E, Terrace HS (2013) Transfer of a serial representation between two distinct tasks by rhesus macaques. PLoS ONE 8:e70285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen G, Muñoz F, Alkan Y, Ferrera VP, Terrace HS (2015) Implicit value updating explains transitive inference performance: the betasort model. PLOS Comput Biol 11:e1004523

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen G, Alkan Y, Muñoz F, Ferrera VP, Terrace HS (2017) Transitive inference in humans (Homo sapiens) and rhesus macaques (Macaca mulatta) after massed training of the last two list items. J Comp Psychol 131:231–245

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen G, Alkan Y, Ferrera VP, Terrace HS (2019) Reward associations do not explain transitive inference performance in monkeys. Sci Adv 5:eaaw2089

    Article  PubMed  PubMed Central  Google Scholar 

  • Kao T, Jensen G, Michaelcheck C, Ferrera VP, Terrace HS (2020) Absolute and relative knowledge of ordinal position. J Exp Psychol Learn Mem Cognit 46:2227–2245

  • Lashley KS (1951) The problem of serial order in behavior. In: Jeffress LA (ed) Cerebral mechanisms in behavior. Wiley, New York, pp 112–131

    Google Scholar 

  • Lazareva OF (2012) Transitive inference in nonhuman animals. In: Zentall TR, Wasserman EA (eds) Oxford handbook of comparative cognition. Oxford University Press, Oxford, pp 718–735

    Google Scholar 

  • Lazareva OF, Wasserman EA (2006) Effect of stimulus orderability and reinforcement history on transitive responding in pigeons. Behav Proc 72:161–172

    Article  Google Scholar 

  • Lazareva OF, Wasserman EA (2012) Transitive inference in pigeons: measuring the associative value of stimuli B and D. Behav Proc 89:244–255

    Article  Google Scholar 

  • Lazareva OF, Gazes RP, Elkins Z, Hampton R (2020) Associative models fail to characterize transitive inference performance in rhesus monkeys (Macaca mulatta). Learn Behav 48:135–148

    Article  PubMed  PubMed Central  Google Scholar 

  • McElreath R (2020) Statistical rethinking: a Bayesian course with examples in R and Stan, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • McGonigle BO, Chalmers M (1977) Are monkeys logical? Nature 267:694–696

    Article  CAS  PubMed  Google Scholar 

  • Merritt DJ, Terrace HS (2011) Mechanisms of inferential order judgments in humans (Homo sapiens) and rhesus monkeys (Macaca mulatta). J Comp Psychol 125:227–238

    Article  PubMed  PubMed Central  Google Scholar 

  • Reid AK (2009) Resistance to change within heterogeneous response sequences. J Exp Psychol Anim Behav Process 35:293–311

    Article  PubMed  Google Scholar 

  • Roberts WA, Phelps MT (1994) Transitive inference in rats: a test of the spatial coding hypothesis. Psychol Sci 5:368–374

    Article  Google Scholar 

  • Tanner N, Jensen G, Ferrera VP, Terrace HS (2017) Inferential learning of serial order of perceptual categories by rhesus monkeys (Macaca mulatta). J Neurosci 37:6268–6276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Templer VL, Gazes RP, Hampton RR (2019) Co-operation of long-term and working memory representations in simultaneous chaining by rhesus monkeys (Macaca mulatta). Q J Exp Psychol 72:2208–2224

    Article  Google Scholar 

  • Terrace HS (1986) A nonverbal organism’s knowledge of ordinal position in a serial learning task. J Exp Psychol Anim Behav Process 12:203–214

    Article  Google Scholar 

  • Terrace HS (2005) The simultaneous chain: a new approach to serial learning. Trends Cognit Sci 9:202–210

    Article  Google Scholar 

  • Terrace HS (2010) The comparative psychology of serially organized behavior. Comp Cognit Behav Rev 4:39–73

    Google Scholar 

  • Terrace HS (2012) The comparative psychology of ordinal behavior. In: Zentall TR, Wasserman EA (eds) Oxford handbook of comparative cognition. Oxford University Press, pp 615–651

    Google Scholar 

  • Thomas L, Juanes F (1996) The importance of statistical power analysis: an example from animal behaviour. Anim Behav 52:856–859

    Article  Google Scholar 

  • Tibbetts EA, Agudelo J, Pandit S, Riojas J (2019) Transitive inference in Polistes paper wasps. Biol Lett 15:20190015

    Article  PubMed  PubMed Central  Google Scholar 

  • Treichler FR (2012) Serial list retention by non-human primates: complexity and cognitive continuity. In: McFarland D, Stenning K, Mcgonigle-Chalmers M (eds) The complex mind: an interdisciplinary approach. Palgrave Macmillan, pp 25–37

    Chapter  Google Scholar 

  • Treichler FR, Raghanti MA (2010) Serial list combination by monkeys (Macaca mulatta): test cues and linking. Anim Cognit 13:121–131

    Article  Google Scholar 

  • Treichler FR, Van Tilburg D (1996) Concurrent conditional discrimination tests for transitive inference by macaque monkeys: list linking. J Exp Psychol Anim Behav Process 22:105–117

    Article  CAS  PubMed  Google Scholar 

  • Treichler FR, Raghanti MA, Van Tilburg D (2003) Linking of serially ordered lists by macaque monkeys (Macaca mulatta): list position influences. J Exp Psychol Anim Behav Process 29:211–221

    Article  PubMed  Google Scholar 

  • Treichler FR, Raghanti MA, Van Tilburg D (2007) Serial list combination by macaque monkeys (Macaca mulatta): list property limitations. J Comp Psychol 121:250–259

    Article  PubMed  Google Scholar 

  • Vasconcelos M (2008) Transitive inference in non-human animals: an empirical and theoretical analysis. Behav Proc 78:313–334

    Article  Google Scholar 

  • von Fersen L, Wynne CDL, Delius JD, Staddon JER (1991) Transitive inference formation in pigeons. J Exp Psychol Anim Behav Process 17:334–341

    Article  Google Scholar 

  • Weaver J, Steirn JN, Zentall TR (1997) Transitive inference in pigeons: control for differential value transfer. Psychon Bull Rev 4:113–117

    Article  Google Scholar 

  • Wei CA, Kamil AC, Bond AB (2014) Direct and relational representation during transitive list linking in pinyon jays (Gymnorhinus cyanocephalus). J Comp Psychol 121:250–259

    Google Scholar 

  • Wynne CDL (1995) Reinforcement accounts for transitive inference performance. Anim Learn Behav 23:207–217

    Article  Google Scholar 

  • Wynne CDL (1997) Pigeon transitive inference: tests of simple accounts of a complex performance. Behav Proc 39:95–112

    Article  CAS  Google Scholar 

  • Zentall TR, Clement TS (2001) Simultaneous discriminative learning: stimulus interactions. Anim Learn Behav 29:311–325

    Article  Google Scholar 

Download references

Acknowledgements

We thank Yelda Alkan, David Freshwater, Aliza Gross, Katherine Liu, and Grant Spencer for assistance with data collection.

Funding

This work was supported by US National Institute of Mental Health, Grant numbers NIH-MH081153 and NIH-MH111703 awarded to Vincent Ferrera and Herbert Terrace.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Jensen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jensen, G., Ferrera, V.P. & Terrace, H.S. Positional inference in rhesus macaques. Anim Cogn 25, 73–93 (2022). https://doi.org/10.1007/s10071-021-01536-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-021-01536-x

Keywords

Navigation