Skip to main content

Habituation in anuran tadpoles and the role of risk uncertainty

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The ability to learn in the context of predation allows prey to respond to threats by adjusting their behavior based on specific information acquired from their current environment. Habituation is a process that allows animals to adapt to environmental changes. Very little is known about habituation in wild animals in general and there are no studies on habituation in anuran tadpoles in particular. Here, we performed three experiments to investigate the behavioral response of predator naïve Pleurodema thaul tadpoles to repeated stimulation with two predation risk cues (injured conspecific and predator fed cues) which a priori provide different information regarding risk. Experiment 1 showed that P. thaul tadpoles habituate the antipredator response when undergo predation risk chemical cues from injured conspecific and that response is long term. Experiment 2 showed that P. thaul tadpoles did not habituate their antipredator response when exposed to cues derived from an event of nymph odonate preying on P. thaul tadpoles (predator fed cues). Experiment 3 specifically evaluated the risk imposed by each of the risk cues used in Experiment 1 and Experiment 2 and showed that the degree of perceived risk in tadpoles appear to be similar in a single experience with any risk stimuli. We suggest that the behavioral habituation of tadpoles in the context of predation could be modulated by the level of uncertainty associated with risk stimuli.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

All relevant data generated and analyzed during this study are included in this published article. Video recording or unpublished data are available from the corresponding author upon reasonable request.

References

  1. Blumstein DT (2016) Habituation and sensitization: new thoughts about old ideas. Anim Behav 120:255–262. https://doi.org/10.1016/j.anbehav.2016.05.012

    Article  Google Scholar 

  2. Brown GD (1997) Isolated-brain parallels to simple types of learning and memory in Tritonia. Physiol Behav 62:509–518. https://doi.org/10.1016/S0031-9384(97)00008-5

    CAS  Article  PubMed  Google Scholar 

  3. Castellucci VF, Carew TJ, Kandel ER (1978) Cellular analysis of long-term habituation of the gill-withdrawal reflex of Aplysia californica. Science 202:1306–1308. https://doi.org/10.1126/science.214854

    CAS  Article  PubMed  Google Scholar 

  4. Chivers DP, Smith RJF (1998) Chemical alarm signaling in aquatic predator/prey interactions: a review and prospectus. Ecoscience 5:338–352. https://doi.org/10.1080/11956860.1998.11682471

    Article  Google Scholar 

  5. Chivers DP, Mitchell MD, Lucon-Xiccato T, Brown GE, Maud CO, Ferrari MCO (2016) Background risk influences learning but not generalization of predators. Anim Behav 121:185–189. https://doi.org/10.1016/j.anbehav.2016.08.008

    Article  Google Scholar 

  6. Crane AL, Demuth BS, Ferrari MCO (2017) Experience with predators shapes learning rules in larval amphibians. Behav Ecol 28:312–318. https://doi.org/10.1093/beheco/arw161

    Article  Google Scholar 

  7. Domjan M (2003) Principios de aprendizaje y conducta. Thomson, Madrid

    Google Scholar 

  8. Dukas R (2004) Evolutionary biology of animal cognition. Annu Rev Ecol Evol Syst 35:347–374. https://doi.org/10.1146/annurev.ecolsys.35.112202.130152

    Article  Google Scholar 

  9. Eisenstein EM, Eisenstein DL, Sarma JS, Knapp H, Smith JC (2012) Some new speculative ideas about the “behavioral homeostasis theory” as to how the simple learned behaviors of habituation and sensitization improve organism survival throughout phylogeny. Commun Integr Biol 5:233–239. https://doi.org/10.4161/cib.19480

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ellenberg U, Mattern T, Seddon PJ (2009) Habituation potential of yellow eyed penguins depends on sex, character and previous experience with humans. Anim Behav 77:289–296. https://doi.org/10.1016/j.anbehav.2008.09.021

    Article  Google Scholar 

  11. Ferrari MCO, Chivers DP (2011) Learning about non-predators and safe places: the forgotten elements of risk assessment. Anim Cogn 14:309–316. https://doi.org/10.1007/s10071-010-0363-4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ferrari MCO, Brown GE, Messier F, Chivers DP (2009) Threat sensitive generalization of predator recognition by amphibians. Behav Ecol Sociobiol 63:1369–1375. https://doi.org/10.1007/s00265-009-0779-5

    Article  Google Scholar 

  13. Ferrari MCO, Brown GE, Bortolotti GR, Chivers DP (2010a) Linking predator risk and uncertainty to adaptive forgetting: a theoretical framework and empirical test using tadpoles. Proc R Soc B 277:2205–2210. https://doi.org/10.1098/rspb.2009.2117

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ferrari MCO, Wisenden BD, Chivers DP (2010b) Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus. Can J Zool 88:698–724. https://doi.org/10.1139/Z10-029

    Article  Google Scholar 

  15. Fraker ME (2008) The dynamics of predation risk assessment: responses of anuran larvae to chemical cues of predators. J Anim Ecol 77:638–645. https://doi.org/10.1111/j.1365-2656.2008.01386.x

    Article  PubMed  Google Scholar 

  16. Fraker ME (2009) The effect of prior experience on a prey’s current perceived risk. Oecologia 158:765–774. https://doi.org/10.1007/s00442-008-1185-9

    Article  PubMed  Google Scholar 

  17. Gonzalo A, López P, Martín J (2010) Risk level of chemical cues determines retention of recognition of new predators in Iberian green frog tadpoles. Behav Ecol Sociobiol 64:1117–1123. https://doi.org/10.1007/s00265-010-0927-y

    Article  Google Scholar 

  18. Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190. https://doi.org/10.2307/3890061

    Article  Google Scholar 

  19. Guilford T, Dawkins MS (1991) Receiver psychology and the evolution of animal signals. Anim Behav 42:1–14. https://doi.org/10.1016/S0003-3472(05)80600-1

    Article  Google Scholar 

  20. Hemmi JM, Merkle T (2009) High stimulus specificity characterizes anti-predator habituation under natural conditions. Proc R Soc B 276:4381–4388. https://doi.org/10.1098/rspb.2009.1452

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hettyey A, Tóth Z, Thonhauser KE, Frommen JG, Penn DJ, Buskirk JV (2015) The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles. Oecologia 179:699–710. https://doi.org/10.1007/s00442-015-3382-7

    Article  PubMed  Google Scholar 

  22. James EJ, Gu J, Ramirez-Vizcarrondo CM, Hasan M, Truszkowski TL, Tan Y, Oupravanh PM, Khakhalin AS, Aizenman CD (2015) Valproate-induced neurodevelopmental deficits in Xenopus laevis tadpoles. J Neurosci 35:3218–3229. https://doi.org/10.1523/JNEUROSCI.4050-14.2015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Jara FG, Perotti MG (2010) Risk of predation and behavioural response in three anuran species: influence of tadpole size and predator type. Hydrobiologia 644:313–324. https://doi.org/10.1007/s10750-010-0196-9

    Article  Google Scholar 

  24. Jara FG, Úbeda CA, Perotti MG (2013) Predatory insects in lentic freshwater habitats from Northwest Patagonia: richness and phenology. J Nat Hist 47:2749–2768. https://doi.org/10.1080/00222933.2013.791932

    Article  Google Scholar 

  25. Kandel ER, Schwartz JH, Jessell T (1997) Neurociencia y conducta. Prentice Hall, Madrid

    Google Scholar 

  26. Kimber JA, Sims DW, Bellamy PH, Gill AB (2013) Elasmobranch cognitive ability: using electroreceptive foraging behaviour to demonstrate learning, habituation and memory in a benthic shark. Anim Cogn 17:55–65. https://doi.org/10.1007/s10071-013-0637-8

    Article  PubMed  Google Scholar 

  27. Koops MA (2004) Reliability and the value of information. Anim Behav 67:103–111. https://doi.org/10.1016/j.anbehav.2003.02.008

    Article  Google Scholar 

  28. Kuba MJ, Byrne RA, Meisel DV, Mather JA (2006) Exploration and habituation in intact free moving Octopus vulgaris. Int J Comp Psychol 19:426–438

    Google Scholar 

  29. Mathis A, Ferrari MCO, Windel N, Messier F, Chivers DP (2008) Learning by embryos and the ghost of predation future. Proc R Soc B 275:2603–2607. https://doi.org/10.1098/rspb.2008.0754

    Article  PubMed  PubMed Central  Google Scholar 

  30. McCoy MW, Wheat SK, Warkentin KM, Vonesh JR (2015) Risk assessment based on indirect predation cues: revisiting fine-grained variation. Ecol Evol 5:4523–4528. https://doi.org/10.1002/ece3.1552

    Article  PubMed  PubMed Central  Google Scholar 

  31. Megela AL, Capranica RR (1983) A neural and behavioral study of auditory habituation in the bullfrog, Rana catesbeiana. J Comp Physiol 151:423–434. https://doi.org/10.1007/BF00605458

    Article  Google Scholar 

  32. Mirza RS, Ferrari MCO, Kiesecker JM, Chivers DP (2006) Responses of American toad tadpoles to predation cues: behavioural response thresholds, threat-sensitivity and acquired predation recognition. Behaviour 143:887–889. https://doi.org/10.1163/156853906778017926

    Article  Google Scholar 

  33. Papini MR (2009) Psicología comparada: evolución y desarrollo del comportamiento. El Manual Moderno, Colombia

    Google Scholar 

  34. Polo-Cavia N, Gomez-Mestre I (2014) Learned recognition of introduced predators determines survival of tadpole prey. Funct Ecol 28:432–439. https://doi.org/10.1111/1365-2435.12175

    Article  Google Scholar 

  35. Pueta M, Perotti MG (2016) Anuran tadpoles learn to recognize injury cues from members of the same prey guild. Anim Cogn 19:745–751. https://doi.org/10.1007/s10071-016-0971-8

    Article  PubMed  Google Scholar 

  36. Pueta M, Cruz FB, Perotti MG (2016) Feeding regime and food availability determine behavioural decisions under predation risk in Pleurodema thaul (Anura: Leiuperidae) tadpoles. Herp J 26:61–64

    Google Scholar 

  37. Pueta M, Andaluz Arcos N, Perotti MG (2017) El estado de alimentación de renacuajos de Pleurodema thaul (Anura: Leptodactylidae) modula la adquisición de un aprendizaje relacionado a riesgo de depredación. Cuad Herpetol 31:83–91

    Google Scholar 

  38. Raderschall CA, Magrath RD, Hemmi JM (2011) Habituation under natural conditions: model predators are distinguished by approach direction. J Exp Biol 214:4209–4216. https://doi.org/10.1242/jeb.061614

    Article  PubMed  Google Scholar 

  39. Rankin CH, Abrams T, Barry RJ, Bhatnagar S, Clayton DF, Colombo J et al (2009) Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol Learn Mem 92:135–138. https://doi.org/10.1016/j.nlm.2008.09.012

    Article  PubMed  Google Scholar 

  40. Reichert MS (2010) Aggressive thresholds in Dendropsophus ebraccatus: habituation and sensitization to different call types. Behav Ecol Sociobiol 64:529–539. https://doi.org/10.1007/s00265-009-0868-5

    Article  Google Scholar 

  41. Rodríguez-Prieto I, Martín J, Fernández-Juricic E (2010) Habituation to low-risk predators improves body condition in lizards. Behav Ecol Sociobiol 64:1937–1945. https://doi.org/10.1007/s00265-010-1004-2

    Article  Google Scholar 

  42. Rowe C (2013) Receiver psychology: a receiver’s perspective. Anim Behav 85:517–523. https://doi.org/10.1016/j.anbehav.2013.01.004

    Article  Google Scholar 

  43. Schoeppner NM, Relyea RA (2005) Damage, digestion, and defence: the roles of alarm cues and kairomones for inducing prey defences. Ecol Lett 8:505–512. https://doi.org/10.1111/j.1461-0248.2005.00744.x

    Article  PubMed  Google Scholar 

  44. Schoeppner NM, Relyea RA (2009) Interpreting the smells of predation: how alarm cues and kairomones induce different prey defenses. Funct Ecol 23:1114–1121. https://doi.org/10.1111/j.1365-2435.2009.01578.x

    Article  Google Scholar 

  45. Shaffery HM, Relyea RA (2015) Dissecting the smell of fear from conspecific and heterospecific prey: investigating the processes that induce anti-predator defenses. Oecologia 180:55–65. https://doi.org/10.1007/s00442-015-3444-x

    Article  PubMed  Google Scholar 

  46. Shettleworth SJ (2001) Animal cognition and animal behaviour. Anim Behav 61:277–286. https://doi.org/10.1006/anbe.2000.1606

    Article  Google Scholar 

  47. Skelly DK (1994) Activity level and susceptibility of anuran larvae to predation. Anim Behav 47:465–468. https://doi.org/10.1006/anbe.1994.1063

    Article  Google Scholar 

  48. Sztarker J, Tomsic D (2008) Neuronal correlates of the visually elicited escape response of the crab Chasmagnathus upon seasonal variations, stimuli changes and perceptual alterations. J Comp Physiol A 194:587–596. https://doi.org/10.1007/s00359-008-0333-3

    Article  Google Scholar 

  49. Tanabe S, Kasuya E, Miyatake T (2019) Individual and sexual differences in time to habituate to food-stimuli presentation of potential prey in Hyla Japonica. Curr Herpetol 38:14–22. https://doi.org/10.5358/hsj.38.14

    Article  Google Scholar 

  50. Thompson RF, Spencer WA (1966) Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev 73:16–43. https://doi.org/10.1037/h0022681

    CAS  Article  PubMed  Google Scholar 

  51. Tomsic D, Massoni V, Maldonado H (1993) Habituation to a danger stimulus in two semiterrestrial crabs: ontogenic, ecological and opioid modulation correlates. J Comp Physiol A 173:621–633. https://doi.org/10.1007/BF00197770

    Article  Google Scholar 

  52. Ydenberg R, Dill L (1986) The economics of fleeing from predators. Adv Study Behav 16:229–249. https://doi.org/10.1016/S0065-3454(08)60192-8

    Article  Google Scholar 

  53. Zylberberg J, DeWeese MR (2011) How should prey animals respond to uncertain threats? Front Comput Neurosci 5:20. https://doi.org/10.3389/fncom.2011.00020

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to P Abate and the two anonymous reviewers who provided helpful comments to improve this work.

Funding

This work was supported by Universidad Nacional del Comahue (UNCo 04/B 237), Argentina.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mariana Pueta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

Experiments were performed under the Guidelines for Use of Live Amphibians and Reptiles in Field Research (ASIH). Experiments followed the ethical norms imposed by Argentina (APN N° 1231). Animals for this study were collected with the permission of Secretaría de Ambiente y Desarrollo Sustentable, Río Negro (1532/2018) and Secretaria de Medio Ambiente of San Carlos de Bariloche, Río Negro, Argentina (N° 250—DAP-2018).

Consent to participate

All the authors gave their consent to participate in this article.

Consent for publication

All the authors gave their consent to publish this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pueta, M., Ardanaz, D. & Tallone, J.C. Habituation in anuran tadpoles and the role of risk uncertainty. Anim Cogn (2021). https://doi.org/10.1007/s10071-021-01534-z

Download citation

Keywords

  • Learning
  • Anuran tadpoles
  • Predation risk
  • Behavioral response
  • Pleurodema thaul