Skip to main content

African elephants can detect water from natural and artificial sources via olfactory cues

Abstract

Water is vital for mammals. Yet, as ephemeral sources can be difficult to find, it raises the question, how do mammals locate water? Elephants (Loxodonta africana) are water-dependent herbivores that possess exceptional olfactory capabilities, and it has been suggested that they may locate water via smell. However, there is no evidence to support this claim. To explore this, we performed two olfactory choice experiments with semi-tame elephants. In the first, we tested whether elephants could locate water using olfactory cues alone. For this, we used water from two natural dams and a drinking trough utilised by the elephants. Distilled water acted as a control. In the second, we explored whether elephants could detect three key volatile organic compounds (VOCs) commonly associated with water (geosmin, 2-methylisoborneol, and dimethyl sulphide). We found that the elephants could locate water olfactorily, but not the distilled water. Moreover, they were also able to detect the three VOCs associated with water. However, these VOCs were not in the odour profiles of the water sources in our experiments. This suggests that the elephants were either able to detect the unique odour profiles of the different water sources or used other VOCs that they associate with water. Ultimately, our findings indicate that elephants can locate water olfactorily at small spatial scales, but the extent to which they, and other mammals, can detect water over larger scales (e.g. km) remains unclear.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

Upon publication, all data will be available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.h9w0vt4hc.

References

  1. Al-Toum MO, Al-Johany AM (2000) Water deprivation and its effect on some blood constituents in Idmi Gazelle, Gazella gazella. J Arid Environ 45:253–262. https://doi.org/10.1006/jare.1999.0606

    Article  Google Scholar 

  2. Asquith E, Evans C, Dunstan RH, Geary P, Cole B (2018) Distribution, abundance and activity of geosmin and 2-methylisoborneol-producing Streptomyces in drinking water reservoirs. Water Res 145:30–38. https://doi.org/10.1016/j.watres.2018.08.014

    CAS  Article  PubMed  Google Scholar 

  3. Aydin YM et al (2014) Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species. Sci Total Environ 490:239–253. https://doi.org/10.1016/j.scitotenv.2014.04.132

    CAS  Article  PubMed  Google Scholar 

  4. Bates LA, Sayialel KN, Njiraini NW, Moss CJ, Poole JH, Byrne RW (2007) Elephants classify human ethnic groups by odor and garment color. Curr Biol 17:1938–1942. https://doi.org/10.1016/j.cub.2007.09.060

    CAS  Article  PubMed  Google Scholar 

  5. Bates LA, Sayialel KN, Njiraini NW, Poole JH, Moss CJ, Byrne RW (2008) African elephants have expectations about the locations of out-of-sight family members. Biol Lett 4:34–36. https://doi.org/10.1098/rsbl.2007.0529

    Article  PubMed  Google Scholar 

  6. Bax PN, Sheldrick DLW (1963) Some preliminary observations on the food of elephant in the Tsavo Royal National Park (East) of Kenya. Afr J Ecol 1:40–51. https://doi.org/10.1111/j.1365-2028.1963.tb00177.x

    Article  Google Scholar 

  7. Bear IJ, Thomas RG (1964) Nature of argillaceous odour. Nature 201:993–995. https://doi.org/10.1038/201993a0

    CAS  Article  Google Scholar 

  8. Bechard MJ, Rayburn WR (1979) Volatile organic sulfides from freshwater algae. J Phycol 15:379–383. https://doi.org/10.1111/j.1529-8817.1979.tb00708.x

    CAS  Article  Google Scholar 

  9. Biau G (2012) Analysis of a random forests model. J Mach Learn Res 13:1063–1095

    Google Scholar 

  10. Cain JW, Krausman PR, Rosenstock SS, Turner JC (2006) Mechanisms of thermoregulation and water balance in desert ungulates. Wildl Soc Bull 1973–2006(34):570–581. https://doi.org/10.2193/0091-7648(2006)34[570:MOTAWB]2.0.CO;2

    Article  Google Scholar 

  11. Chamaillé-Jammes S, Fritz H, Murindagomo F (2007) Climate-driven fluctuations in surface-water availability and the buffering role of artificial pumping in an African savanna: Potential implication for herbivore dynamics. Austral Ecol 32:740–748. https://doi.org/10.1111/j.1442-9993.2007.01761.x

    Article  Google Scholar 

  12. Chamaillé-Jammes S, Mtare G, Makuwe E, Fritz H (2013) African elephants adjust speed in response to surface-water constraint on foraging during the dry-season. PLoS ONE 8:e59164. https://doi.org/10.1371/journal.pone.0059164

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Chong J, Xia J (2018) MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 34:4313–4314. https://doi.org/10.1093/bioinformatics/bty528

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Garstang M et al (2014) Response of African Elephants (Loxodonta africana) to seasonal changes in rainfall. PLoS ONE 9:e108736. https://doi.org/10.1371/journal.pone.0108736

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Gaylard A, Owen-Smith N, Redfern JV (2003) Surface water availability: implications for heterogeneity and ecosystem processes. In: du Toit JT, Rogers KH, Biggs HC (eds) The Kruger experience: ecology and management of savanna heterogeneity. Island Press, Washington, pp 171–188

    Google Scholar 

  16. Gerber NN (1967) Geosmin, an earthy-smelling substance isolated from actinomycetes. Biotechnol Bioengin 9:321–327. https://doi.org/10.1002/bit.260090305

    CAS  Article  Google Scholar 

  17. Izaguirre G, Hwang CJ, Krasner SW, McGuire MJ (1982) Geosmin and 2-methylisoborneol from cyanobacteria in three water supply systems. Appl Environ Microbiol 43:708–714. https://doi.org/10.1128/AEM.43.3.708-714.1982

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Jenkins D, Medsker LL, Thomas JF (1967) Odorous compounds in natural waters. Some sulfur compounds associated with blue-green algae. Environ Sci Technol 1:731–735. https://doi.org/10.1021/es60009a005

    CAS  Article  PubMed  Google Scholar 

  19. Jüttner F, Watson SB (2007) Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl Environ Microbiol 73:4395–4406. https://doi.org/10.1128/aem.02250-06

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24:2534–2536. https://doi.org/10.1093/bioinformatics/btn323

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Kihwele ES et al (2020) Quantifying water requirements of African ungulates through a combination of functional traits. Ecol Mono 90:e01404. https://doi.org/10.1002/ecm.1404

    Article  Google Scholar 

  22. Maltz E, Shkolnik A (1980) Milk Production in the Desert: Lactation and Water Economy in the Black Bedouin Goat. Physiol Zool 53:12–18. https://doi.org/10.1086/physzool.53.1.30155770

    Article  Google Scholar 

  23. Marneweck C, Jürgens A, Shrader AM (2018) Ritualised dung kicking by white rhino males amplifies olfactory signals but reduces odour duration. J Chem Ecol 44:875–885. https://doi.org/10.1007/s10886-018-0988-3

    CAS  Article  PubMed  Google Scholar 

  24. McArthur C, Finnerty PB, Schmitt MH, Shuttleworth A, Shrader AM (2019) Plant volatiles are a salient cue for foraging mammals: elephants target preferred plants despite background plant odour. Anim Behav 155:199–216. https://doi.org/10.1016/j.anbehav.2019.07.002

    Article  Google Scholar 

  25. McKee CJ et al (2015) Spatial distributions and resource selection by mule deer in an arid environment: Responses to provision of water. J Arid Environ 122:76–84. https://doi.org/10.1016/j.jaridenv.2015.06.008

    Article  Google Scholar 

  26. Naidoo R et al (2020) Mapping and assessing the impact of small-scale ephemeral water sources on wildlife in an African seasonal savannah. Ecol Applic 30:e02203. https://doi.org/10.1002/eap.2203

    Article  Google Scholar 

  27. Nevitt GA, Bonadonna F (2005) Sensitivity to dimethyl sulphide suggests a mechanism for olfactory navigation by seabirds. Biol Lett 1:303–305. https://doi.org/10.1098/rsbl.2005.0350

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Nevo O, Schmitt MH, Ayasse M, Valenta K (2020) Sweet tooth: Elephants detect fruit sugar levels based on scent alone. Ecol Evol 10:11399–11407. https://doi.org/10.1002/ece3.6777

    Article  PubMed  PubMed Central  Google Scholar 

  29. Niimura Y, Matsui A, Touhara K (2014) Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Res 24:1485–1496. https://doi.org/10.1101/gr.169532.113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Noda M, Sakuta H (2013) Central regulation of body-fluid homeostasis. Trends Neurosci 36:661–673. https://doi.org/10.1016/j.tins.2013.08.004

    CAS  Article  PubMed  Google Scholar 

  31. Owen-Smith N (1996) Ecological guidelines for waterpoints in extensive protected areas. S Afr J Wildl Res 26:107–112. https://doi.org/10.10520/EJC117014

    Article  Google Scholar 

  32. Polansky L, Kilian W, Wittemyer G (2015) Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state–space models. Proc Royal Soci B 282:20143042. https://doi.org/10.1098/rspb.2014.3042

    Article  Google Scholar 

  33. Presotto A, Fayrer-Hosken R, Curry C, Madden M (2019) Spatial mapping shows that some African elephants use cognitive maps to navigate the core but not the periphery of their home ranges. Anim Cogn 22:251–263. https://doi.org/10.1007/s10071-019-01242-9

    Article  PubMed  Google Scholar 

  34. Ramey EM, Ramey RR, Brown LM, Kelley ST (2013) Desert-dwelling African elephants (Loxodonta africana) in Namibia dig wells to purify drinking water. Pachyderm 53:66–72

    Google Scholar 

  35. Redfern JV, Grant R, Biggs H, Getz WM (2003) Surface-water constraints on herbivore foraging in the Kruger National Park, South Africa. Ecology 84:2092–2107. https://doi.org/10.1890/01-0625

    Article  Google Scholar 

  36. Redfern JV, Grant CC, Gaylard A, Getz WM (2005) Surface water availability and the management of herbivore distributions in an African savanna ecosystem. J Arid Environ 63:406–424. https://doi.org/10.1016/j.jaridenv.2005.03.016

    Article  Google Scholar 

  37. Rizvanovic A, Amundin M, Laska M (2012) Olfactory discrimination ability of Asian Elephants (Elephas maximus) for structurally related odorants. Chem Senses 38:107–118. https://doi.org/10.1093/chemse/bjs097

    CAS  Article  PubMed  Google Scholar 

  38. Schmitt MH, Shuttleworth A, Ward D, Shrader AM (2018) African elephants use plant odours to make foraging decisions across multiple spatial scales. Anim Behav 141:17–27. https://doi.org/10.1016/j.anbehav.2018.04.016

    Article  Google Scholar 

  39. Shoshani J, Foley C (2000) Frequently asked question about elephants. Elephant 2:78–87. https://doi.org/10.22237/elephant/1521732268

    Article  Google Scholar 

  40. Shoshani J, Kupsky WJ, Marchant GH (2006) Elephant brain. Part I: gross morphology, functions, comparative anatomy, and evolution. Brain Res Bull 70:124–157. https://doi.org/10.1016/j.brainresbull.2006.03.016

    Article  PubMed  Google Scholar 

  41. Shrader AM, Kotler BP, Brown JS, Kerley GIH (2008) Providing water for goats in arid landscapes: effects on feeding effort with regard to time period, herd size and secondary compounds. Oikos 117:466–472. https://doi.org/10.1111/j.2007.0030-1299.16410.x

    Article  Google Scholar 

  42. Silanikove N (1992) Effects of water scarcity and hot environment on appetite and digestion in ruminants: a review. Livest Prod Sci 30:175–194. https://doi.org/10.1016/S0301-6226(06)80009-6

    Article  Google Scholar 

  43. Smit IPJ, Grant CC, Devereux BJ (2007) Do artificial waterholes influence the way herbivores use the landscape? Herbivore distribution patterns around rivers and artificial surface water sources in a large African savanna park. Biol Cons 136:85–99. https://doi.org/10.1016/j.biocon.2006.11.009

    Article  Google Scholar 

  44. Suffet IH, Schweitze L, Khiari D (2004) Olfactory and chemical analysis of taste and odor episodes in drinking water supplies. Rev Environ Sci Biotech 3:3–13. https://doi.org/10.1023/B:RESB.0000040012.94870.48

    CAS  Article  Google Scholar 

  45. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS Online: a web-based platform to process untargeted metabolomic data. Anal Chem 84:5035–5039. https://doi.org/10.1021/ac300698c

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Thrash I, Theron GK, Bothma JdP (1995) Dry season herbivore densities around drinking troughs in the Kruger National Park. J Arid Environ 29:213–219. https://doi.org/10.1016/S0140-1963(05)80091-6

    Article  Google Scholar 

  47. Tsalyuk M, Kilian W, Reineking B, Getz WM (2019) Temporal variation in resource selection of African elephants follows long-term variability in resource availability. Ecol Mono 89:e01348. https://doi.org/10.1002/ecm.1348

    Article  Google Scholar 

  48. Tshipa A et al (2017) Partial migration links local surface-water management to large-scale elephant conservation in the world’s largest transfrontier conservation area. Biol Cons 215:46–50. https://doi.org/10.1016/j.biocon.2017.09.003

    Article  Google Scholar 

  49. Valenta K, Schmitt MH, Ayasse M, Nevo O (2021) The sensory ecology of fear: African elephants show aversion to olfactory predator signals. Cons Sci Prac 3:e333. https://doi.org/10.1111/csp2.333

    Article  Google Scholar 

  50. Valls-Fox H et al (2018a) Water and cattle shape habitat selection by wild herbivores at the edge of a protected area. Anim Cons 21:365–375. https://doi.org/10.1111/acv.12403

    Article  Google Scholar 

  51. Valls-Fox H, De Garine-Wichatitsky M, Fritz H, Chamaillé-Jammes S (2018b) Resource depletion versus landscape complementation: habitat selection by a multiple central place forager. Landsc Ecol 33:127–140. https://doi.org/10.1007/s10980-017-0588-6

    Article  Google Scholar 

  52. von Dürckheim KEM et al (2018) African elephants (Loxodonta africana) display remarkable olfactory acuity in human scent matching to sample performance. Appl Anim Behav Sci 200:123–129. https://doi.org/10.1016/j.applanim.2017.12.004

    Article  Google Scholar 

  53. Western D (1975) Water availability and its influence on the structure and dynamics of a savannah large mammal community. E Afr Wildl J 13:265–286. https://doi.org/10.1111/j.1365-2028.1975.tb00139.x

    Article  Google Scholar 

  54. Young WF, Horth H, Crane R, Ogden T, Arnott M (1996) Taste and odour threshold concentrations of potential potable water contaminants. Water Res 30:331–340. https://doi.org/10.1016/0043-1354(95)00173-5

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank S. Hensman and the rest of the team at Adventures with Elephants for allowing us to run the experiments. T. Bester and M. Schmitt assisted with data collection, and J. Joubert helped with the analysis of VOCs. J. Katz and three anonymous reviewers provided valuable comments on the manuscript.

Funding

The work was supported by the University of Pretoria to AMS and the French Agence Nationale de la Recherche [ANR-16-CE02-0001-01] to SCJ.

Author information

Affiliations

Authors

Contributions

M.W., S. C-J and A.M.S conceived the ideas, designed the methodology, and led the writing of the manuscript. M.W. and A.M.S. collected and analysed the data. A.H. conducted and interpreted the olfactory analysis. All authors contributed critically to the drafts.

Corresponding author

Correspondence to Adrian M. Shrader.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical approval

All animal experiments were approved by the University of Pretoria’s Animal Ethics Committee (reference number NAS075/2019) in compliance with South African laws and regulations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 260 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wood, M., Chamaillé-Jammes, S., Hammerbacher, A. et al. African elephants can detect water from natural and artificial sources via olfactory cues. Anim Cogn (2021). https://doi.org/10.1007/s10071-021-01531-2

Download citation

Keywords

  • 2-Methylisoborneol
  • Dimethyl sulphide
  • Geosmin
  • Smell of water
  • Surface water
  • Volatile organic compounds