Absolute brain size predicts dog breed differences in executive function

Abstract

Large-scale phylogenetic studies of animal cognition have revealed robust links between absolute brain volume and species differences in executive function. However, past comparative samples have been composed largely of primates, which are characterized by evolutionarily derived neural scaling rules. Therefore, it is currently unknown whether positive associations between brain volume and executive function reflect a broad-scale evolutionary phenomenon, or alternatively, a unique consequence of primate brain evolution. Domestic dogs provide a powerful opportunity for investigating this question due to their close genetic relatedness, but vast intraspecific variation. Using citizen science data on more than 7000 purebred dogs from 74 breeds, and controlling for genetic relatedness between breeds, we identify strong relationships between estimated absolute brain weight and breed differences in cognition. Specifically, larger-brained breeds performed significantly better on measures of short-term memory and self-control. However, the relationships between estimated brain weight and other cognitive measures varied widely, supporting domain-specific accounts of cognitive evolution. Our results suggest that evolutionary increases in brain size are positively associated with taxonomic differences in executive function, even in the absence of primate-like neuroanatomy. These findings also suggest that variation between dog breeds may present a powerful model for investigating correlated changes in neuroanatomy and cognition among closely related taxa.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Akdemir D, Godfrey OU (2015) EMMREML: fitting mixed models with known covariance structures. https://cran.r-project.org/web/packages/EMMREML/EMMREML.pdf

  2. Amici F, Barney B, Johnson VE, Call J, Aureli F (2012) A modular mind? A test using individual data from seven primate species. PLoS One. https://doi.org/10.1371/journal.pone.0051918

    Article  PubMed  PubMed Central  Google Scholar 

  3. Armstrong E (1990) Brains, bodies and metabolism. Brain Behav Evol 36:166–176. https://doi.org/10.1159/000115305

    Article  CAS  PubMed  Google Scholar 

  4. Barton RA, Harvey PH (2000) Mosaic evolution of brain structures in mammals. Nature 405(1997):1055–1058

    Article  CAS  PubMed  Google Scholar 

  5. Barton RA, Venditti C (2014) Rapid evolution of the cerebellum in humans and other great apes. Curr Biol 24(20):2440–2444. https://doi.org/10.1016/j.cub.2014.08.056

    Article  CAS  PubMed  Google Scholar 

  6. Benson-Amram S, Dantzer B, Stricker G, Swanson EM, Holekamp KE (2016) Brain size predicts problem-solving ability in mammalian carnivores. Proc Natl Acad Sci 113(9):2532–2537. https://doi.org/10.1073/pnas.1505913113

    Article  CAS  PubMed  Google Scholar 

  7. Bonney R, Cooper CB, Dickinson J, Kelling S, Phillips T, Rosenberg KV, Shirk J (2009) Citizen science: a developing tool for expanding science knowledge and scientific literacy. Bioscience 59(11):977–984. https://doi.org/10.1525/bio.2009.59.11.9

    Article  Google Scholar 

  8. Boyko AR, Quignon P, Li L, Schoenebeck JJ, Degenhardt JD, Lohmueller KE, Ostrander EA (2010) A simple genetic architecture underlies morphological variation in dogs. PLoS Biol 8(8):49–50. https://doi.org/10.1371/journal.pbio.1000451

    Article  CAS  Google Scholar 

  9. Bronson RT (1979) Brain weight-body weight scaling in breeds of dogs and cats. Brain Behav Evol 16:227–236

    Article  CAS  PubMed  Google Scholar 

  10. Buechel SD, Boussard A, Kotrschal A, van der Bijl W, Kolm N (2017) Brain size affects performance in a reversal-learning test. Proc R Soc Lond Ser B Biol Sci. https://doi.org/10.1098/rspb.2017.2031

    Article  Google Scholar 

  11. Cooper C (2016) Citizen science: How ordinary people are changing the face of discovery. The Overlook Press, New York

    Google Scholar 

  12. Coppinger R, Schneider R (1995) Evolution of working dogs. In: Serpell J (ed) The domestic dog: its evolution, behaviour and interactions with people. Cambridge University Press, pp 21–47. https://www.gwern.net/docs/genetics/heritable/1995-serpellthedomesticdog.pdf

  13. Deaner RO, Isler K, Burkart J, Van Schaik C (2007) Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav Evol 70(2):115–124. https://doi.org/10.1159/000102973

    Article  PubMed  Google Scholar 

  14. Finlay B, Darlington R (1995) Linked regularities in the development and evolution of mammalian brains. Science 268(5217):1578–1584. https://doi.org/10.1126/science.7777856

    Article  CAS  PubMed  Google Scholar 

  15. Gácsi M, McGreevy PD, Kara E, Miklósi Á (2009) Effects of selection for cooperation and attention in dogs. Behav Brain Funct BBF 5:31. https://doi.org/10.1186/1744-9081-5-31

    Article  PubMed  Google Scholar 

  16. Garamszegi LZ, Eens M (2004) The evolution of hippocampus volume and brain size in relation to food hoarding in birds. Ecol Lett 7(12):1216–1224. https://doi.org/10.1111/j.1461-0248.2004.00685.x

    Article  Google Scholar 

  17. Gould KL, Gilbertson KE, Seyfer AL, Brantner RM, Hrvol AJ, Kamil AC, Nelson JC (2013) Differences in relative hippocampus volume and number of hippocampus neurons among five corvid species. Brain Behav Evol 81(1):56–70. https://doi.org/10.1146/annurev-immunol-032713-120240.Microglia

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hayward JJ, Castelhano MG, Oliveira KC, Corey E, Balkman C, Baxter TL, Boyko AR (2016) Complex disease and phenotype mapping in the domestic dog. Nat Commun 7(10460):1–11. https://doi.org/10.1038/ncomms10460

    CAS  Article  Google Scholar 

  19. Healy SD, Krebs JR (1992) Foord storing and the hippocampus in corvids: amount and volume are correlated. Proc R Soc Lond 248:241–245. https://doi.org/10.1098/rspb.1992.0068

    Article  Google Scholar 

  20. Helton WS, Helton ND (2010) Physical size matters in the domestic dog’s (Canis lupus familiaris) ability to use human pointing cues. Behav Process 85(1):77–79. https://doi.org/10.1016/j.beproc.2010.05.008

    Article  Google Scholar 

  21. Herculano-Houzel S (2012) Neuronal scaling rules for primate brains: the primate advantage. In: Hofman MA, Falk D (eds) Progress in brain research, vol 195, 1st edn. Elsevier B.V., pp. 325–340. https://doi.org/10.1016/B978-0-444-53860-4.00015-5

  22. Herculano-Houzel S (2014) The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia 62(9):1377–1391. https://doi.org/10.1002/glia.22683

    Article  Google Scholar 

  23. Herculano-Houzel S (2017) Numbers of neurons as biological correlates of cognitive capability. Curr Opin Behav Sci 16:1–7. https://doi.org/10.1016/j.cobeha.2017.02.004

    Article  Google Scholar 

  24. Herculano-Houzel S, Mota B, Lent R (2006) Cellular scaling rules for rodent brains. Proc Natl Acad Sci 103(32):12138–12143. https://doi.org/10.1016/B0-12-370878-8/00345-1

    Article  CAS  PubMed  Google Scholar 

  25. Herculano-Houzel S, Collins CE, Wong P, Kaas JH (2007) Cellular scaling rules for primate brains. Proc Natl Acad Sci USA 104(9):3562–3567. https://doi.org/10.1073/pnas.0611396104

    Article  CAS  PubMed  Google Scholar 

  26. Hsu Y, Serpell JA (2003) Development and validation of a questionnaire for measuring behavior and temperament traits in pet dogs. J Am Vet Med Assoc 223(9):1293–1300

    Article  PubMed  Google Scholar 

  27. Jardim-Messeder D, Lambert K, Noctor S, Pestana FM, de Castro Leal ME, Bertelsen MF, Herculano-Houzel S (2017) Dogs have the most neurons, though not the largest brain: trade-off between body mass and number of neurons in the cerebral cortex of large carnivoran species. Front Neuroanat 11:1–18. https://doi.org/10.3389/fnana.2017.00118

    Article  CAS  Google Scholar 

  28. Kaas JH (2000) Why is brain size so important: design problems and solutions as neocortex gets bigger or smaller. Brain Mind 1(1):7–23. https://doi.org/10.1023/A:1010028405318

    Article  Google Scholar 

  29. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723. https://doi.org/10.1534/genetics.107.080101

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kotrschal A, Rogell B, Bundsen A, Svensson B, Zajitschek S, Brannstrom I, Kolm N (2013) Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr Biol 23:168–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kotrschal A, Corral-Lopez A, Amcoff M, Kolm N (2015) A larger brain confers a benefit in a spatial mate search learning task in male guppies. Behav Ecol 26(2):527–532. https://doi.org/10.1093/beheco/aru227

    Article  PubMed  Google Scholar 

  32. Kruska D (1988) Effects of domestication on brain structure and behavior in mammals. Hum Evol 3(6):473–485. https://doi.org/10.1007/BF02436333

    Article  Google Scholar 

  33. Logan CJ, Avin S, Boogert N, Buskell A, Cross FR, Currie A, Montgomery SH (2018) Beyond brain size: uncovering the neural correlates of behavioral and cognitive specialization. Comp Cogn Behav Rev 13:55–89. https://doi.org/10.3819/CCBR.2018.130008

    Article  Google Scholar 

  34. Lucas JR, Brodin A, de Kort SR, Clayton NS (2004) Does hippocampal size correlate with the degree of caching specialization? Proc R Soc B Biol Sci 271(1556):2423–2429. https://doi.org/10.1098/rspb.2004.2912

    Article  Google Scholar 

  35. MacLean EL, Sandel AA, Bray J, Oldenkamp RE, Reddy RB, Hare B (2013) Group size predicts social but not nonsocial cognition in lemurs. PLoS One 8(6):1–9. https://doi.org/10.1371/journal.pone.0066359

    Article  CAS  Google Scholar 

  36. MacLean EL, Hare B, Nunn CL, Addessi E, Amici F, Anderson RC, Zhao Y (2014) The evolution of self-control. Proc Natl Acad Sci 111(20):E2140–E2148. https://doi.org/10.1073/pnas.1323533111

    Article  CAS  PubMed  Google Scholar 

  37. MacLean EL, Herrmann E, Suchindran S, Hare B (2017) Individual differences in cooperative communicative skills are more similar between dogs and humans than chimpanzees. Anim Behav 126:41–51. https://doi.org/10.1016/j.anbehav.2017.01.005

    Article  Google Scholar 

  38. Madden J (2001) Sex, bowers and brains. Proc Biol Sci 268(1469):833–838. https://doi.org/10.1098/rspb.2000.1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McGreevy PD, Georgevsky D, Carrasco J, Valenzuela M, Duffy DL, Serpell JA (2013) Dog behavior co-varies with height, bodyweight and skull shape. PLoS One. https://doi.org/10.1371/journal.pone.0080529

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mortensen HS, Pakkenberg B, Dam M, Dietz R, Sonne C, Mikkelsen B, Eriksen N (2014) Quantitative relationships in delphinid neocortex. Front Neuroanat 8:1–10. https://doi.org/10.3389/fnana.2014.00132

    Article  Google Scholar 

  41. Müller CA, Riemer S, Virányi Z, Huber L, Range F (2016) Inhibitory control, but not prolonged object-related experience appears to affect physical problem-solving performance of pet dogs. PLoS One 11(2):1–19. https://doi.org/10.1371/journal.pone.0147753

    Article  CAS  Google Scholar 

  42. Overington SE, Morand-Ferron J, Boogert NJ, Lefebvre L (2009) Technical innovations drive the relationship between innovativeness and residual brain size in birds. Anim Behav 78(4):1001–1010. https://doi.org/10.1016/j.anbehav.2009.06.033

    Article  Google Scholar 

  43. R Core Team (2016) A Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://doi.org/citeulike-article-id:2400517. Accessed 21 June 2016

  44. Reader SM, Laland KN (2002) Social intelligence, innovation, and enhanced brain size in primates. Proc Natl Acad Sci 99(7):4436–4441. https://doi.org/10.1073/pnas.062041299

    Article  CAS  PubMed  Google Scholar 

  45. Roberts T, McGreevy P, Valenzuela M (2010) Human induced rotation and reorganization of the brain of domestic dogs. PLoS One. https://doi.org/10.1371/journal.pone.0011946

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shettleworth SJ (2009) Cognition, evolution, and behavior, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  47. Shultz S, Dunbar RIM (2010) Species differences in executive function correlate with hippocampus volume and neocortex ratio across nonhuman primates. J Comp Psychol 124(3):252–260. https://doi.org/10.1037/a0018894

    Article  PubMed  Google Scholar 

  48. Sol D, Duncan RP, Blackburn TM, Cassey P, Lefebvre L (2005) Big brains, enhanced cognition, and response of birds to novel environments. Proc Natl Acad Sci USA 102(15):5460–5465. https://doi.org/10.1073/pnas.0408145102

    Article  CAS  PubMed  Google Scholar 

  49. Sol D, Bacher S, Reader SM, Lefebvre L (2008) Brain size predicts the success of mammal species introduced into novel environments. Am Nat 172(Suppl):S63–S71. https://doi.org/10.1086/588304

    Article  PubMed  Google Scholar 

  50. Stewart L, MacLean EL, Ivy D, Woods V, Cohen E, Rodriguez K, Hare B (2015) Citizen science as a new tool in dog cognition research. PLoS One 10(9):1–16. https://doi.org/10.1371/journal.pone.0135176

    Article  CAS  Google Scholar 

  51. Thames RA, Robertson ID, Flegel T, Henke D, O’Brien DP, Coates JR, Olby NJ (2009) Development of a morphometric magnetic resonance paramater suitable for distinguishing between normal dogs and dogs with cerebellar atrophy. Canine Brain Morphometry 51(3):246–253. https://doi.org/10.1111/j.1740-8261.2009.01655.x

    Article  Google Scholar 

  52. Udell MAR, Ewald M, Dorey NR, Wynne CDL (2014) Exploring breed differences in dogs (Canis familiaris): does exaggeration or inhibition of predatory response predict performance on human-guided tasks? Anim Behav 89:99–105. https://doi.org/10.1016/j.anbehav.2013.12.012

    Article  Google Scholar 

  53. Wobber V, Hare B, Koler-Matznick J, Wrangham R, Tomasello M (2009) Breed differences in domestic dogs’ (Canis familiaris) comprehension of human communicative signals. Interact Stud. https://doi.org/10.1075/is.10.2.06wob

    Article  Google Scholar 

  54. Wosinski M, Schleicher A, Zilles K (1996) Quantitative analysis of gyrification of cerebral cortex in dogs. Neurology 4:441–468

    CAS  Google Scholar 

  55. Zhou X, Stephens M (2012) Genome-wide efficient mixed model analysis for association studies. Nat Genet 44(7):821–824. https://doi.org/10.1038/ng.2310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Laurie Santos, Richard Wrangham, David Ivy, Eliot Cohen, Kip Frey, and all other members of the Dognition.com team for their help in the creation of Dognition.com; Adam Boyko, Martin Schmidt, and James Serpell for sharing data used in this project; Stacey Tecot and David Raichlen for valuable feedback on previous drafts; and especially all of the dog owners who participated in Dognition.com experiments as citizen scientists.

Funding

DJH was supported by an Emil W. Haury Fellowship from the School of Anthropology at the University of Arizona, and a Graduate Access Fellowship from the Graduate College at the University of Arizona. ÁM was supported by the Hungarian Academy of Sciences (MTA-ELTE Comparative Ethology Research Group, MTA 01 031).

Author information

Affiliations

Authors

Contributions

BH, JC, JK, ÁM, and ELM conceived and designed the experiments. DJH and ELM analyzed the data. DJH, BH, JC, JK, ÁM, and ELM wrote the paper.

Corresponding author

Correspondence to Daniel J. Horschler.

Ethics declarations

Conflict of interest

BH is a founder of Dognition.com and a member of its Scientific Advisory Board. JC, JK, and ÁM are also members of the Dognition.com Scientific Advisory Board.

Data accessibility

Data are available as electronic supplementary material.

Ethical standards

All animals included in this study were pet dogs tested by citizen scientists in their own homes. The use of third-party data from Dognition.com was approved by Duke University IACUC protocol A138-11-06 and data were collected in accordance with relevant guidelines and regulations.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 894 KB)

Supplementary material 2 (XLSX 26 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horschler, D.J., Hare, B., Call, J. et al. Absolute brain size predicts dog breed differences in executive function. Anim Cogn 22, 187–198 (2019). https://doi.org/10.1007/s10071-018-01234-1

Download citation

Keywords

  • Cognitive evolution
  • Brain evolution
  • Brain size
  • Executive function
  • Breed differences
  • Citizen science