Cognitive test batteries in animal cognition research: evaluating the past, present and future of comparative psychometrics

Abstract

For the past two decades, behavioural ecologists have documented consistent individual differences in behavioural traits within species and found evidence for animal “personality”. It is only relatively recently, however, that increasing numbers of researchers have begun to investigate individual differences in cognitive ability within species. It has been suggested that cognitive test batteries may provide an ideal tool for this growing research endeavour. In fact, cognitive test batteries have now been used to examine the causes, consequences and underlying structure of cognitive performance within and between many species. In this review, we document the existing attempts to develop cognitive test batteries for non-human animals and review the claims that these studies have made in terms of the structure and evolution of cognition. We argue that our current test battery methods could be improved on multiple fronts, from the design of tasks, to the domains targeted and the species tested. Refining and optimising test battery design will provide many benefits. In future, we envisage that well-designed cognitive test batteries may provide answers to a range of exciting questions, including giving us greater insight into the evolution and structure of cognition.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Adolphs R (1999) Social cognition and the human brain. Trends Cogn Sci 3:469–479

    CAS  PubMed  Article  Google Scholar 

  2. Amici F, Barney B, Johnson VE et al (2012) A modular mind? A test using individual data from seven primate species. PLoS ONE 7:e51918. doi:10.1371/journal.pone.0051918

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Amici F, Call J, Aureli F (2017) Co-existence of general intelligence and specialized modules. Behav Brain Sci 40:e196. doi:10.1017/S0140525X16001576

    Article  Google Scholar 

  4. Anderson B (1993) Evidence from the rat for a general factor that underlies cognitive performance and that relates to brain size: intelligence? Neurosci Lett 153(1):98–102

    CAS  PubMed  Article  Google Scholar 

  5. Aplin LM, Farine DR, Morand-Ferron J et al (2015) Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature 518:538–541. doi:10.1038/nature13998

    CAS  PubMed  Article  Google Scholar 

  6. Arden R, Adams MJ (2016) A general intelligence factor in dogs. Intelligence 55:79–85. doi:10.1016/j.intell.2016.01.008

    Article  Google Scholar 

  7. Banerjee K, Chabris CF, Johnson VE et al (2009) General intelligence in another primate: individual differences across cognitive task performance in a New World monkey (Saguinus oedipus). PLoS ONE 4:e5883. doi:10.1371/journal.pone.0005883

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. Bebus SE, Small TW, Jones BC et al (2016) Associative learning is inversely related to reversal learning and varies with nestling corticosterone exposure. Anim Behav 111:251–260. doi:10.1016/j.anbehav.2015.10.027

    Article  Google Scholar 

  9. Biro PA, Stamps JA (2008) Are animal personality traits linked to life-history productivity? Trends Ecol Evol 23:361–368. doi:10.1016/j.tree.2008.04.003

    PubMed  Article  Google Scholar 

  10. Boogert NJ, Giraldeau L-A, Lefebvre L (2008) Song complexity correlates with learning ability in zebra finch males. Anim Behav 76:1735–1741. doi:10.1016/j.anbehav.2008.08.009

    Article  Google Scholar 

  11. Boogert NJ, Anderson RC, Peters S et al (2011) Song repertoire size in male song sparrows correlates with detour reaching, but not with other cognitive measures. Anim Behav 81:1209–1216. doi:10.1016/j.anbehav.2011.03.004

    Article  Google Scholar 

  12. Bouchard J, Goodyer W, Lefebvre L (2007) Social learning and innovation are positively correlated in pigeons (Columba livia). Anim Cogn 10:259–266. doi:10.1007/s10071-006-0064-1

    PubMed  Article  Google Scholar 

  13. Bshary R, Grutter AS (2006) Image scoring and cooperation in a cleaner fish mutualism. Nature 441:975–978. doi:10.1038/nature04755

    CAS  PubMed  Article  Google Scholar 

  14. Burkart JM, Schubiger MN, van Schaik CP (2017a) Future directions for studying the evolution of general intelligence. Behav Brain Sci 40:e224. doi:10.1017/S0140525X17000024

    Article  Google Scholar 

  15. Burkart JM, Schubiger MN, van Schaik CP (2017b) The evolution of general intelligence. Behav Brain Sci 40:1–65. doi:10.1017/S0140525X16000959

    Article  Google Scholar 

  16. Carere C, Maestripieri D (2013) Animal personalities: behavior, physiology, and evolution. University of Chicago Press, Chicago

    Google Scholar 

  17. Carroll JB (1993) Human cognitive abilities. Cambridge University Press, Cambridge

    Google Scholar 

  18. Carter AJ, Feeney WE, Marshall HH et al (2013) Animal personality: what are behavioural ecologists measuring? Biol Rev Camb Philos Soc 88:465–475. doi:10.1111/brv.12007

    PubMed  Article  Google Scholar 

  19. Cauchard L, Boogert NJ, Lefebvre L et al (2013) Problem-solving performance is correlated with reproductive success in a wild bird population. Anim Behav 85:19–26. doi:10.1016/j.anbehav.2012.10.005

    Article  Google Scholar 

  20. Chandra SB, Hosler JS, Smith BH (2000) Heritable variation for latent inhibition and its correlation with reversal learning in honeybees (Apis mellifera). J Comp Psychol 114:86–97

    CAS  PubMed  Article  Google Scholar 

  21. Cheke LG, Clayton NS (2012) Eurasian jays (Garrulus glandarius) overcome their current desires to anticipate two distinct future needs and plan for them appropriately. Biol Lett 8:171–175. doi:10.1098/rsbl.2011.0909

    PubMed  Article  Google Scholar 

  22. Cheke LG, Bird CD, Clayton NS (2011) Tool-use and instrumental learning in the Eurasian jay (Garrulus glandarius). Anim Cogn 14:441–455. doi:10.1007/s10071-011-0379-4

    PubMed  Article  Google Scholar 

  23. Chow PKY, Lea SEG, Leaver LA (2016) How practice makes perfect: the role of persistence, flexibility and learning in problem-solving efficiency. Anim Behav 112:273–283. doi:10.1016/j.anbehav.2015.11.014

    Article  Google Scholar 

  24. Cole EF, Morand-Ferron J, Hinks AE, Quinn JL (2012) Cognitive ability influences reproductive life history variation in the wild. Curr Biol 22:1808–1812. doi:10.1016/j.cub.2012.07.051

    CAS  PubMed  Article  Google Scholar 

  25. Crocker L, Algina J (1986) Introduction to classical and modern test theory. Holt, Rinehart and Winston, Orlando

    Google Scholar 

  26. Croston R, Branch CL, Kozlovsky DY et al (2015a) Heritability and the evolution of cognitive traits. Behav Ecol 26:1447–1459. doi:10.1093/beheco/arv088

    Article  Google Scholar 

  27. Croston R, Branch CL, Kozlovsky DY et al (2015b) The importance of heritability estimates for understanding the evolution of cognition: a response to comments on Croston et al. Behav Ecol 26:1463–1464. doi:10.1093/beheco/arv192

    Article  Google Scholar 

  28. Deaner R, Van Schaik C, Johnson V (2006) Do some taxa have better domain-general cognition than others? A meta-analysis of nonhuman primate studies. Evol Psychol 4:149–196

    Google Scholar 

  29. Deary IJ (2001) Human intelligence differences: a recent history. Trends Cogn Sci 5:127–130. doi:10.1016/S1364-6613(00)01621-1

    PubMed  Article  Google Scholar 

  30. Deary IJ, Spinath FM, Bates TC (2006) Genetics of intelligence. Eur J Hum Genet 14:690–700. doi:10.1038/sj.ejhg.5201588

    CAS  PubMed  Article  Google Scholar 

  31. Deary IJ, Penke L, Johnson W (2010) The neuroscience of human intelligence differences. Nat Rev Neurosci 11:201–211. doi:10.1038/nrn2793

    CAS  PubMed  Google Scholar 

  32. Emery NJ, Clayton NS (2004) The mentality of crows: convergent evolution of intelligence in corvids and apes. Science (80-) 306:1903–1907. doi:10.1126/science.1098410

    CAS  Article  Google Scholar 

  33. Forss SIF, Willems E, Call J, van Schaik CP (2016) Cognitive differences between orang-utan species: a test of the cultural intelligence hypothesis. Sci Rep 6:30516. doi:10.1038/srep30516

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Galsworthy MJ, Paya-Cano JL, Monleón S, Plomin R (2002) Evidence for general cognitive ability (g) in heterogeneous stock mice and an analysis of potential confounds. Genes Brain Behav 1:88–95. doi:10.1034/j.1601-183X.2002.10204.x

    CAS  PubMed  Article  Google Scholar 

  35. Galsworthy MJ, Paya-Cano JL, Liu L et al (2005) Assessing reliability, heritability and general cognitive ability in a battery of cognitive tasks for laboratory mice. Behav Genet 35:675–692. doi:10.1007/s10519-005-3423-9

    PubMed  Article  Google Scholar 

  36. Galsworthy MJ, Arden R, Chabris CF (2014) Animal models of general cognitive ability for genetic research into cognitive functioning. In: Finkel D, Reynolds CA (eds) Behavior genetics of cognition across the lifespan. Springer, New York, pp 257–278

    Google Scholar 

  37. Gardner H (2017) Taking a multiple intelligences (MI) perspective. Behav Brain Sci 40:e203. doi:10.1017/S0140525X16001631

    Article  Google Scholar 

  38. Gray JR, Thompson PM (2004) Neurobiology of intelligence: science and ethics. Nat Rev Neurosci 5:471–482. doi:10.1038/nrn1405

    CAS  PubMed  Article  Google Scholar 

  39. Griffin AS, Guez D (2016) Bridging the gap between cross-taxon and within-species analyses of behavioural innovations in birds: making sense of discrepant cognition-innovation relationships and the role of motor diversity. Adv Study Behav. doi:10.1016/bs.asb.2016.02.001

    Google Scholar 

  40. Griffin AS, Guez D, Lermite F, Patience M (2013) Tracking changing environments: innovators are fast, but not flexible learners. PLoS ONE. doi:10.1371/journal.pone.0084907

    Google Scholar 

  41. Griffin AS, Guillette LM, Healy SD (2015) Cognition and personality: an analysis of an emerging field. Trends Ecol Evol 30:207–214. doi:10.1016/j.tree.2015.01.012

    PubMed  Article  Google Scholar 

  42. Hare B (2001) Can competitive paradigms increase the validity of experiments on primate social cognition? Anim Cogn 4:269–280. doi:10.1007/s100710100084

    CAS  PubMed  Article  Google Scholar 

  43. Hayton JC, Allen DG, Scarpello V (2004) Factor retention decisions in exploratory factor analysis: a tutorial on parallel analysis. Organ Res Methods 7:191–205. doi:10.1177/1094428104263675

    Article  Google Scholar 

  44. Herrmann E, Call J (2012) Are there geniuses among the apes? Philos Trans R Soc B Biol Sci 367:2753–2761. doi:10.1098/rstb.2012.0191

    Article  Google Scholar 

  45. Herrmann E, Call J, Hernàndez-Lloreda MV et al (2007) Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science (80-) 317:1360–1366. doi:10.1126/science.1146282

    CAS  Article  Google Scholar 

  46. Herrmann E, Hernández-Lloreda MV, Call J et al (2010) The structure of individual differences in the cognitive abilities of children and chimpanzees. Psychol Sci 21:102–110. doi:10.1177/0956797609356511

    PubMed  Article  Google Scholar 

  47. Hopkins WD, Russell JL, Schaeffer J (2014) Chimpanzee intelligence is heritable. Curr Biol 24:1649–1652. doi:10.1016/j.cub.2014.05.076

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Huber L (2017) Where is the evidence for general intelligence in non-human animals? Behav Brain Sci 40:e206. doi:10.1017/S0140525X16001667

    Article  Google Scholar 

  49. Isden J, Panayi C, Dingle C, Madden J (2013) Performance in cognitive and problem-solving tasks in male spotted bowerbirds does not correlate with mating success. Anim Behav 86:829–838. doi:10.1016/j.anbehav.2013.07.024

    Article  Google Scholar 

  50. Izquierdo A, Jentsch JD (2012) Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology 219:607–620. doi:10.1007/s00213-011-2579-7

    CAS  PubMed  Article  Google Scholar 

  51. Jelbert SA, Taylor AH, Gray RD (2016) Does absolute brain size really predict self-control? Hand-tracking training improves performance on the A-not-B task. Biol Lett 12:20150871. doi:10.1098/rsbl.2015.0871

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Keagy J, Savard J-F, Borgia G (2009) Male satin bowerbird problem-solving ability predicts mating success. Anim Behav 78:809–817. doi:10.1016/j.anbehav.2009.07.011

    Article  Google Scholar 

  53. Keagy J, Savard J-F, Borgia G (2011) Complex relationship between multiple measures of cognitive ability and male mating success in satin bowerbirds, Ptilonorhynchus violaceus. Anim Behav 81:1063–1070. doi:10.1016/j.anbehav.2011.02.018

    Article  Google Scholar 

  54. Kis A, Huber L, Wilkinson A (2015) Social learning by imitation in a reptile (Pogona vitticeps). Anim Cogn 18:325–331. doi:10.1007/s10071-014-0803-7

    PubMed  Article  Google Scholar 

  55. Kolata S, Light K, Townsend DA et al (2005) Variations in working memory capacity predict individual differences in general learning abilities among genetically diverse mice. Neurobiol Learn Mem 84:241–246. doi:10.1016/j.nlm.2005.07.006

    PubMed  Article  Google Scholar 

  56. Kolata S, Light K, Grossman HC et al (2007) Selective attention is a primary determinant of the relationship between working memory and general learning ability in outbred mice. Learn Mem 14:22–28. doi:10.1101/lm.408507

    PubMed  PubMed Central  Article  Google Scholar 

  57. Kolata S, Light K, Matzel LD (2008) Domain-specific and domain-general learning factors are expressed in genetically heterogeneous CD-1 mice. Intelligence 36:619–629. doi:10.1016/j.intell.2007.12.001

    PubMed  PubMed Central  Article  Google Scholar 

  58. Light KR, Kolata S, Wass C et al (2010) Working memory training promotes general cognitive abilities in genetically heterogeneous mice. Curr Biol 20:777–782. doi:10.1016/j.cub.2010.02.034

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Locurto C, Fortin E, Sullivan R (2003) The structure of individual differences in heterogeneous stock mice across problem types and motivational systems. Genes Brain Behav 2:40–55. doi:10.1034/j.1601-183X.2003.00006.x

    CAS  PubMed  Article  Google Scholar 

  60. MacLean EL, Hare B, Nunn CL et al (2014) The evolution of self-control. Proc Natl Acad Sci USA 111:E2140–E2148. doi:10.1073/pnas.1323533111

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Maille A, Schradin C (2016) Survival is linked with reaction time and spatial memory in African striped mice. Biol Lett 12:277–286. doi:10.1098/rsbl.2016.0346

    Article  Google Scholar 

  62. Matzel LD, Sauce B (2017) Evolution, brain size, and variations in intelligence. Behav Brain Sci 40:e213. doi:10.1017/S0140525X16001722

    Article  Google Scholar 

  63. Matzel LD, Han YR, Grossman H et al (2003) Individual differences in the expression of a “general” learning ability in mice. J Neurosci 23:6423–6433

    CAS  PubMed  Google Scholar 

  64. Morand-Ferron J, Quinn JL (2015) The evolution of cognition in natural populations. Trends Cogn Sci 19:235–237. doi:10.1016/j.tics.2015.03.005

    PubMed  Article  Google Scholar 

  65. Morand-Ferron J, Cole EF, Quinn JL (2015) Studying the evolutionary ecology of cognition in the wild: a review of practical and conceptual challenges. Biol Rev. doi:10.1111/brv.12174

    PubMed  Google Scholar 

  66. Nawroth C, von Borell E, Langbein J (2015) “Goats that stare at men”: dwarf goats alter their behaviour in response to human head orientation, but do not spontaneously use head direction as a cue in a food-related context. Anim Cogn 18:65–73. doi:10.1007/s10071-014-0777-5

    PubMed  Article  Google Scholar 

  67. O’Connor BP (2000) SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP test. Behav Res Methods Instrum Comput 32:396–402. doi:10.3758/BF03200807

    PubMed  Article  Google Scholar 

  68. Osborne JW, Costello AB (2004) Sample size and subject to item ratio in principal components analysis. Pract Assess Res Eval 9:8

    Google Scholar 

  69. Ostojić L, Shaw RC, Cheke LG, Clayton NS (2013) Evidence suggesting that desire-state attribution may govern food sharing in Eurasian jays. Proc Natl Acad Sci USA 110:4123–4128. doi:10.1073/pnas.1209926110

    PubMed  PubMed Central  Article  Google Scholar 

  70. Plomin R (2001) The genetics of g in human and mouse. Nat Rev Neurosci 2:136–141

    CAS  PubMed  Article  Google Scholar 

  71. Plomin R, Spinath FM (2002) Genetics and general cognitive ability (g). Trends Cogn Sci 6:169–176

    PubMed  Article  Google Scholar 

  72. Plotnik JM, Shaw RC, Brubaker DL et al (2014) Thinking with their trunks: elephants use smell but not sound to locate food and exclude nonrewarding alternatives. Anim Behav 88:91–98. doi:10.1016/j.anbehav.2013.11.011

    Article  Google Scholar 

  73. Powlesland RG (1997) Protocols for monitoring New Zealand robins. Dep Conserv Tech Ser 13:1–14

    Google Scholar 

  74. Raine NE, Chittka L (2012) No trade-off between learning speed and associative flexibility in bumblebees: a reversal learning test with multiple colonies. PLoS ONE 7:e45096. doi:10.1371/journal.pone.0045096

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Reader SM, Laland KN (2002) Social intelligence, innovation, and enhanced brain size in primates. Proc Natl Acad Sci USA 99:4436–4441. doi:10.1073/pnas.062041299

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Reader SM, Hager Y, Laland KN (2011) The evolution of primate general and cultural intelligence. Philos Trans R Soc Lond B Biol Sci 366:1017–1027. doi:10.1098/rstb.2010.0342

    PubMed  PubMed Central  Article  Google Scholar 

  77. Reale D, Reader SM, Sol D et al (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82:291–318

    PubMed  Article  Google Scholar 

  78. Rowe C, Healy SD (2014) Measuring variation in cognition. Behav Ecol 25:1287–1292. doi:10.1093/beheco/aru090

    Article  Google Scholar 

  79. Salwiczek LH, Prétôt L, Demarta L et al (2012) Adult cleaner wrasse outperform capuchin monkeys, chimpanzees and orang-utans in a complex foraging task derived from cleaner–client reef fish cooperation. PLoS ONE 7:e49068. doi:10.1371/journal.pone.0049068

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Sauce B, Matzel LD (2013) The causes of variation in learning and behavior: why individual differences matter. Front Psychol 4:2–10. doi:10.3389/fpsyg.2013.00395

    Article  Google Scholar 

  81. Schmelz M, Krüger O, Call J, Krause ET (2015) A comparison of spontaneous problem-solving abilities in three Estrildid finch (Taeniopygia guttata, Lonchura striata var. domestica, Stagonopleura guttata) species. J Comp Psychol 129:356–365. doi:10.1037/a0039646

    PubMed  Article  Google Scholar 

  82. Schmitt V, Pankau B, Fischer J (2012) Old world monkeys compare to apes in the primate cognition test battery. PLoS ONE 7:e32024. doi:10.1371/journal.pone.0032024

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Sewall KB, Soha J, Peters S, Nowicki S (2013) Potential trade-off between vocal ornamentation and spatial ability in a songbird. Biol Lett 9:20130344

    PubMed  PubMed Central  Article  Google Scholar 

  84. Shaw RC (2017) Testing cognition in the wild: factors affecting performance and individual consistency in two measures of avian cognition. Behav Process 134:31–36. doi:10.1016/j.beproc.2016.06.004

    Article  Google Scholar 

  85. Shaw RC, Clayton NS (2014) Pilfering Eurasian jays use visual and acoustic information to locate caches. Anim Cogn 17:1281–1288. doi:10.1007/s10071-014-0763-y

    PubMed  Article  Google Scholar 

  86. Shaw RC, MacKinlay RD (2016) Destruction of a North Island robin (Petroica longipes) nest by a little spotted kiwi (Apteryx owenii). Notornis 63:46–49

    Google Scholar 

  87. Shaw RC, Plotnik JM, Clayton NS (2013) Exclusion in corvids: the performance of food-caching Eurasian jays (Garrulus glandarius). J Comp Psychol 127:428–435. doi:10.1037/a0032010

    PubMed  Article  Google Scholar 

  88. Shaw RC, Boogert NJ, Clayton NS, Burns KC (2015) Wild psychometrics: evidence for “general” cognitive performance in wild New Zealand robins, Petroica longipes. Anim Behav 109:101–111. doi:10.1016/j.anbehav.2015.08.001

    Article  Google Scholar 

  89. Shettleworth SJ (2010) Cognition, evolution, and behaviour, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  90. Sih A, Bell A, Johnson JC (2004) Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372–378. doi:10.1016/j.tree.2004.04.009

    PubMed  Article  Google Scholar 

  91. Smith BR, Blumstein DT (2008) Fitness consequences of personality: a meta-analysis. Behav Ecol 19:448–455. doi:10.1093/beheco/arm144

    Article  Google Scholar 

  92. Smith C, Philips A, Reichard M (2015) Cognitive ability is heritable and predicts the success of an alternative mating tactic. Proc R Soc B Biol Sci 282:20151046. doi:10.1098/rspb.2015.1046

    Article  Google Scholar 

  93. Tapp PD, Siwak C, Estrada J et al (2003) Size and reversal learning in the beagle dog as a measure of executive function and inhibitory control in aging. Learn Mem 10:64–73. doi:10.1101/lm.54403

    PubMed  PubMed Central  Article  Google Scholar 

  94. Thornton A, Lukas D (2012) Individual variation in cognitive performance: developmental and evolutionary perspectives. Philos Trans R Soc Lond B Biol Sci 367:2773–2783. doi:10.1098/rstb.2012.0214

    PubMed  PubMed Central  Article  Google Scholar 

  95. Thornton A, Wilson AJ (2015) In search of the Darwinian Holy Trinity in cognitive evolution: comment on Croston et al. Behav Ecol 26:1460–1464. doi:10.1093/beheco/arv119

    Article  Google Scholar 

  96. Thornton A, Isden J, Madden JR (2014) Toward wild psychometrics: linking individual cognitive differences to fitness. Behav Ecol 25:1299–1301. doi:10.1093/beheco/aru095

    Article  Google Scholar 

  97. Vail AL, Manica A, Bshary R (2013) Referential gestures in fish collaborative hunting. Nat Commun 4:1765. doi:10.1038/ncomms2781

    PubMed  Article  CAS  Google Scholar 

  98. van Horik JO, Madden JR (2016) A problem with problem solving: motivational traits, but not cognition, predict success on novel operant foraging tasks. Anim Behav 114:189–198. doi:10.1016/j.anbehav.2016.02.006

    PubMed  PubMed Central  Article  Google Scholar 

  99. van Horik JO, Langley EJG, Whiteside MA, Madden JR (2016) Differential participation in cognitive tests is driven by personality, sex, body condition and experience. Behav Process 134:22–30. doi:10.1016/j.beproc.2016.07.001

    Article  Google Scholar 

  100. Wass C, Denman-Brice A, Rios C et al (2012) Covariation of learning and “reasoning” abilities in mice: evolutionary conservation of the operations of intelligence. J Exp Psychol Anim Behav Process 38:109–124. doi:10.1037/a0027355

    PubMed  Article  Google Scholar 

  101. Wilkinson A, Kuenstner K, Mueller J, Huber L (2010a) Social learning in a non-social reptile (Geochelone carbonaria). Biol Lett 6:614–616. doi:10.1098/rsbl.2010.0092

    PubMed  PubMed Central  Article  Google Scholar 

  102. Wilkinson A, Mandl I, Bugnyar T, Huber L (2010b) Gaze following in the red-footed tortoise (Geochelone carbonaria). Anim Cogn 13:765–769. doi:10.1007/s10071-010-0320-2

    PubMed  Article  Google Scholar 

  103. Woodley of Menie MA, Fernandes HBF, Hopkins WD (2015) The more g-loaded, the more heritable, evolvable, and phenotypically variable: homology with humans in chimpanzee cognitive abilities. Intelligence 50:159–163. doi:10.1016/j.intell.2015.04.002

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

RCS was funded by a Marsden Fast-Start grant from the Royal Society of New Zealand (Grant number VUW1304).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rachael C. Shaw.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaw, R.C., Schmelz, M. Cognitive test batteries in animal cognition research: evaluating the past, present and future of comparative psychometrics. Anim Cogn 20, 1003–1018 (2017). https://doi.org/10.1007/s10071-017-1135-1

Download citation

Keywords

  • Cognitive test battery
  • Psychometric testing
  • Comparative cognition
  • General intelligence
  • g factor
  • Individual variation