Damage-induced alarm cues influence lateralized behaviour but not the relationship between behavioural and habenular asymmetry in convict cichlids (Amatitlania nigrofasciata)

Abstract

Cerebral lateralization, the partitioning of functions into a certain hemisphere of the brain, is ubiquitous among vertebrates. Evidence suggests that the cognitive processing of a stimulus is performed with a specific hemisphere depending in part upon the emotional valence of the stimulus (i.e. whether it is appetitive or aversive). Recent work has implicated a predominance of right-hemisphere processing for aversive stimuli. In fish with laterally placed eyes, the preference to view an object with a specific eye has been used as a proxy for assessing cerebral lateralization. The habenula, one of the most well-known examples of an asymmetrical neural structure, has been linked to behavioural asymmetry in some fish species. Here, we exposed convict cichlid fish (Amatitlania nigrofasciata) to both a social and non-social lateralization task and assessed behavioural lateralization in either the presence or absence of an aversive stimulus, damage-induced alarm cues. We also assessed whether behavioural asymmetry in these tests was related to asymmetry of the habenular nuclei. We found that when alarm cues were present, fish showed increased left-eye (and by proxy, right hemisphere) preference for stimulus viewing. In addition, females, but not males, showed stronger eye preferences when alarm cues were present. We did not find a relationship between behavioural lateralization and habenular lateralization. Our results conflict with previous reports of concordance between behavioural and habenular lateralization in this fish species. However, our results do provide support for the hypothesis of increased right-hemisphere use when an organism is exposed to aversive stimuli.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Andrew RJ, Rogers LJ (2002) The nature of lateralization in tetrapods. In: Rogers LJ, Andrew RJ (eds) Comparative vertebrate lateralization. University Press, Cambridge, pp 94–125

    Google Scholar 

  2. Anfora G, Frasnelli E, Maccagnani B, Rogers LJ, Vallortigara G (2010) Behavioural and electrophysiological lateralization in a social (Apis mellifera) but not in a non-social (Osmia cornuta) species of bee. Behav Brain Res 206:236–239. doi:10.1016/j.bbr.2009.09.023

    Article  PubMed  Google Scholar 

  3. Barth KA, Miklósi A, Watkins J, Bianco IH, Wilson SW, Andrew RJ (2005) fsi zebrafish show concordant reversal of laterality of viscera, neuroanatomy, and a subset of behavioral responses. Curr Biol 15:844–850. doi:10.1016/j.cub.2005.03.047

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bisazza A, Brown C (2011) Lateralization of cognitive functions in fish. In: Brown C, Laland KN, Krause J (eds) Fish cognition and behavior, 2nd edn. Wiley-Blackwell, Cambridge, pp 300–324

    Google Scholar 

  5. Bisazza A, Dadda M (2005) Enhanced schooling performance in lateralized fishes. Proc R Soc B Biol Sci 272:1677–1681. doi:10.1098/rspb.2005.3145

    Article  Google Scholar 

  6. Bisazza A, Pignatti R, Vallortigara G (1997) Detour tests reveal task- and stimulus-specific behavioural lateralization in mosquitofish (Gambusia holbrooki). Behav Brain Res 89:237–242. doi:10.1016/S0166-4328(97)00061-2

    CAS  Article  PubMed  Google Scholar 

  7. Bisazza A, Facchin L, Pignatti R, Vallortigara G (1998) Lateralization of detour behaviour in poeciliid fish: the effect of species, gender and sexual motivation. Behav Brain Res 91:157–164. doi:10.1016/S0166-4328(97)00114-9

    CAS  Article  PubMed  Google Scholar 

  8. Bisazza A, De Santi A, Vallortigara G (1999) Laterality and cooperation: mosquitofish move closer to a predator when the companion is on their left side. Anim Behav 57:1145–1149. doi:10.1006/anbe.1998.1075

    CAS  Article  PubMed  Google Scholar 

  9. Bisazza A, De Santi A, Bonso S, Sovrano VA (2002) Frogs and toads in front of a mirror: lateralisation of response to social stimuli in tadpoles of five anuran species. Behav Brain Res 134:417–424. doi:10.1016/S0166-4328(02)00055-4

    Article  PubMed  Google Scholar 

  10. Bonati B, Csermely D, López P, Martin J (2010) Lateralization in the escape behaviour of the common wall lizard (Podarcis muralis). Behav Brain Res 207:1–6. doi:10.1016/j.bbr.2009.09.002

    Article  PubMed  Google Scholar 

  11. Broder ED, Angeloni LM (2014) Predator-induced phenotypic plasticity of laterality. Anim Behav 98:125–130. doi:10.1016/j.anbehav.2014.09.033

    Article  Google Scholar 

  12. Brown GE, Foam PE, Cowell HE, Guevara Fiore P, Chivers DP (2004) Production of chemical alarm cues in convict cichlids: the effects of diet, body condition and ontogeny. Ann Zool Fenn 41:487–499

    Google Scholar 

  13. Brown GE, Rive AC, Ferrari MCO, Chivers DP (2006) The dynamic nature of antipredator behavior: prey fish integrate threat-sensitive antipredator responses within background levels of predation risk. Behav Ecol Sociobiol 61:9–16. doi:10.1007/s00265-006-0232-y

    Article  Google Scholar 

  14. Brown C, Western J, Braithwaite VA (2007) The influence of early experience on, and inheritance of, cerebral lateralization. Anim Behav 74:231–238. doi:10.1016/j.anbehav.2006.08.014

    Article  Google Scholar 

  15. Byrnes EE, Pouca CV, Brown C (2016) Laterality strength is linked to stress reactivity in Port Jackson sharks (Heterodontus portusjacksoni). Behav Brain Res 305:239–246. doi:10.1016/j.bbr.2016.02.033

    Article  PubMed  Google Scholar 

  16. Cantalupo C, Bisazza A, Vallortigara G (1995) Lateralization of predator-evasion response in a teleost fish (Girardinus falcatus). Neuropsychologia 33(12):1637–1646. doi:10.1016/0028-3932(95)00043-7

    CAS  Article  PubMed  Google Scholar 

  17. Clement TS, Parikh V, Schrumpf M, Fernald RD (2005) Behavioral coping strategies in a cichlid fish: the role of social status and acute stress response in direct and displaced aggression. Horm Behav 47:336–342. doi:10.1016/j.yhbeh.2004.11.014

    CAS  Article  PubMed  Google Scholar 

  18. De Santi A, Sovrano V, Bisazza A, Vallortigara G (2001) Mosquitofish display differential left- and right-eye use during mirror image scrutiny and predator inspection responses. Anim Behav 61:305–310. doi:10.1006/anbe.2000.1566

    Article  Google Scholar 

  19. Dharmaretnam M, Rogers LJ (2005) Hemispheric specialization and dual processing in strongly versus weakly lateralized chicks. Behav Brain Res 162:62–70. doi:10.1016/j.bbr.2005.03.012

    CAS  Article  PubMed  Google Scholar 

  20. Domenici P, Allan B, McCormick MI, Munday PL (2012) Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biol Lett 8(1):78–81. doi:10.1098/rsbl.2011.0591

    CAS  Article  PubMed  Google Scholar 

  21. Efron B, Tibshirani RJ (1994) Introduction to the bootstrap. Chapman and Hall, New York

    Google Scholar 

  22. Facchin L, Bisazza A, Vallortigara G (1999) What causes lateralization of detour behavior in fish? Evidence for asymmetries in eye use. Behav Brain Res 103:229–234. doi:10.1016/S0166-4328(99)00043-1

    CAS  Article  PubMed  Google Scholar 

  23. Ferrari MCO, McCormick MI, Allan BJM, Choi RB, Ramasamy RA, Chivers DP (2015) The effects of background risk on behavioural lateralization in a coral reef fish. Funct Ecol 29:1553–1559. doi:10.1111/1365-2435.12483

    Article  Google Scholar 

  24. Freire R, van Dort S, Rogers LJ (2006) Pre- and post-hatching effects of corticosterone treatment on behavior of the domestic chick. Horm Behav 49:157–165. doi:10.1016/j.yhbeh.2005.05.015

    CAS  Article  PubMed  Google Scholar 

  25. Gainotti G (1972) Emotional behavior and hemispheric side of lesion. Cortex 8:41–55

    CAS  Article  PubMed  Google Scholar 

  26. Gainotti G (2012) Unconscious processing of emotions and the right hemisphere. Neuropsychologia 50:205–218. doi:10.1016/j.neuropsychologia.2011.12.005

    Article  PubMed  Google Scholar 

  27. Gandolfi G, Mainardi D, Rossi AC (1968) The fright reaction of zebra fish. Atti della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 107:74–88. doi:10.1007/BF00042916

    Google Scholar 

  28. Ghirlanda S, Vallortigara G (2004) The evolution of brain lateralization: a game-theoretical analysis of population structure. Proc R Soc B Biol Sci 271:853–857. doi:10.1098/rspb.2003.2669

    Article  Google Scholar 

  29. Ghirlanda S, Fransnelli E, Vallortigara G (2009) Intraspecific competition and coordination in the evolution of lateralization. Philos Trans R Soc B 364:861–866. doi:10.1098/rstb.2008.0227

    Article  Google Scholar 

  30. Gordon DJ, Rogers LJ (2010) Differences in social and vocal behavior between left- and right-handed common marmosets. J Comp Psychol 124:402–411. doi:10.1037/a0019736

    Article  PubMed  Google Scholar 

  31. Gordon DJ, Rogers LJ (2015) Cognitive bias, hand preference and welfare of common marmosets. Behav Brain Res 287:100–108. doi:10.1016/j.bbr.2015.03.037

    Article  PubMed  Google Scholar 

  32. Gutiérrez-Ibáñez C, Reddon AR, Kreuzer MB, Wylie DR, Hurd PL (2011) Variation in the asymmetry of the habenular nucleus correlates with behavioural asymmetry in a cichlid fish. Behav Brain Res 221:189–196. doi:10.1016/j.bbr.2011.03.001

    Article  PubMed  Google Scholar 

  33. Harding EJ, Paul ES, Mendl M (2004) Animal behaviour: cognitive bias and affective state. Nature 427:312. doi:10.1038/427312a

    CAS  Article  PubMed  Google Scholar 

  34. Hikosaka O (2010) The habenula: from stress evasion to value-based decision-making. Nat Rev Neurosci 11:503–513. doi:10.1038/nrn2866

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Irving PW (1996) Sexual dimorphism in club cell distribution in the European minnow and immunocompetence signalling. J Fish Biol 48:80–88. doi:10.1111/j.1095-8649.1996.tb01420.x

    Google Scholar 

  36. Itzkowitz M, Santangelo N, Richter M (2001) Parental division of labour and the shift from minimal to maximal role specializations: an examination using a biparental fish. Anim Behav 61:237–245. doi:10.1006/anbe.2000.1724

    Article  Google Scholar 

  37. Itzkowitz M, Santangelo N, Richter M (2003) How does a parent respond when its mate emphasizes the wrong role? A test using a monogamous fish. Anim Behav 66:863–869. doi:10.1006/anbe.2002.2291

    Article  Google Scholar 

  38. JASP Team (2016) JASP (Version 0.8.0.0) [Computer software]

  39. Kaarthigeyan J, Dharmaretnam M (2005) Relative levels of motivation and asymmetries of viewing and detour task in guppies (Poecilia reticulata). Behav Brain Res 159:37–41. doi:10.1016/j.bbr.2004.09.024

    CAS  Article  PubMed  Google Scholar 

  40. Kalin NH, Larson C, Shelton SE, Davidson RJ (1998) Asymmetric frontal brain activity, cortisol, and behavior associated with fearful temperament in rhesus monkeys. Behav Neurosci 112:286–292. doi:10.1037/0735-7044.112.2.286

    CAS  Article  PubMed  Google Scholar 

  41. Keller-Costa T, Canário AVM, Hubbard PC (2015) Chemical communication in cichlids: a mini-review. Gen Comp Endocr 221:64–74. doi:10.1016/j.ygcen.2015.01.001

    CAS  Article  PubMed  Google Scholar 

  42. Koolhaas JM, de Boer SF, Coppens CM, Buwalda B (2010) Neuroendocrinology of coping styles: towards understanding the biology of individual variation. Front Neuroendocrin 31:307–321. doi:10.1016/j.yfrne.2010.04.001

    CAS  Article  Google Scholar 

  43. Leliveld LMC, Langbein J, Puppe B (2013) The emergence of emotional lateralization: evidence in non-human vertebrates and implications for farm animals. Appl Anim Behav Sci 145:1–14. doi:10.1016/j.applanim.2013.02.002

    Article  Google Scholar 

  44. Lippolis G, Bisazza A, Rogers LJ, Vallortigara G (2002) Lateralization of predator avoidance responses in three species of toads. Laterality 7:163–183. doi:10.1080/13576500143000221

    PubMed  Google Scholar 

  45. Lippolis G, Joss JMP, Rogers LJ (2009) Australian lungfish (Neoceratodus forsteri): a missing link in the evolution of complimentary side biases for predator avoidance and prey capture. Brain Behav Evolut 73:295–303. doi:10.1159/000230674

    CAS  Article  Google Scholar 

  46. Lucon-Xiccato T, Nati JJ, Blasco FR, Johansen JL, Steffensen JF, Domenici P (2014) Severe hypoxia impairs lateralization in a marine teleost fish. J Exp Biol 217(23):4115–4118. doi:10.1242/jeb.111229

    Article  PubMed  Google Scholar 

  47. Lucon-Xiccato T, Chivers DP, Mitchell MD, Ferrari MCO (2016) Prenatal exposure to predation affects predator recognition learning via lateralization plasticity. Behav Ecol. doi:10.1093/beheco/arw155

    Google Scholar 

  48. MacNeilage PF, Rogers LJ, Vallortigara G (2009) Origins of the left and right brain. Sci Am 301:60–67. doi:10.1038/scientificamerican0709-60

    Article  PubMed  Google Scholar 

  49. Matsumoto M, Hikosaka O (2009) Representation of negative motivational value in the primate lateral habenula. Nat Neurosci 12:77–84. doi:10.1038/nn.2233

    CAS  Article  PubMed  Google Scholar 

  50. Miklosi A, Andrew RJ (1999) Right eye use associated with decision to bite in zebrafish. Behav Brain Res 105:199–205. doi:10.1016/S0166-4328(99)00071-6

    CAS  Article  PubMed  Google Scholar 

  51. Moscicki MK, Hurd PL (2015) Sex, boldness and stress experience affect convict cichlid, Amatitlania nigrofasciata, open field behaviour. Anim Behav 107:105–114. doi:10.1016/j.anbehav.2015.05.027

    Article  Google Scholar 

  52. Moscicki MK, Reddon AR, Hurd PL (2011) Lateralized behaviour of a non-social cichlid fish (Amatitlania nigrofasciata) in a social and a non-social environment. Behav Process 88:27–32. doi:10.1016/j.beproc.2011.07.004

    Article  Google Scholar 

  53. Noakes DLG (1991) Ontogeny of behaviour in cichlids. In: Keenleyside MHA (ed) Cichlid fishes: behaviour, ecology and evolution. Chapman and Hall, London, pp 209–224

    Google Scholar 

  54. Ocklenburg S, Korte SM, Peterburs J, Wolf OT, Güntürkün O (2016) Stress and laterality—the comparative perspective. Physiol Behav 164:321–329. doi:10.1016/j.physbeh.2016.06.020

    CAS  Article  PubMed  Google Scholar 

  55. Øverli O, Korzan WJ, Hoglund E, Winberg S, Bollig H, Watt M, Forster GL, Øverli E, Renner KJ, Summers CH (2004) Stress coping style predicts aggression and social dominance in rainbow trout. Horm Behav 45:235–241. doi:10.1016/j.yhbeh.2003.12.002

    Article  PubMed  Google Scholar 

  56. Perria L, Rosadini G, Rossi GF (1961) Determination of side of cerebral dominance with amobarbital. Arch Neurol Chic 4:173–181. doi:10.1001/archneur.1961.00450080055006

    CAS  Article  Google Scholar 

  57. Pollock MS, Zhao X, Brown GE, Kusch RC, Pollock R, Chivers DP (2005) The response of convict cichlids to chemical alarm cues: an integrated study of behaviour, growth and reproduction. Ann Zool Fenn 42:485–495

    Google Scholar 

  58. R Core Development Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  59. Reddon AR, Balshone S (2010) Lateralization in response to social stimuli in a cooperatively breeding cichlid fish. Behav Process 85:68–71. doi:10.1016/j.beproc.2010.06.008

    Article  Google Scholar 

  60. Reddon AR, Hurd PL (2008) Aggression, sex and individual differences in cerebrallateralization in a cichlid fish. Biol Lett 4(4):338–340. doi:10.1098/rsbl.2008.0206

    Article  PubMed  PubMed Central  Google Scholar 

  61. Reddon AR, Hurd PL (2009a) Sex differences in the cerebral lateralization of a cichlid fish when detouring to view emotionally conditioned stimuli. Behav Process 82:25–29. doi:10.1016/j.beproc.2009.03.005

    Article  Google Scholar 

  62. Reddon AR, Hurd PL (2009b) Individual differences in cerebral lateralization are associated with shy-bold variation in the convict cichlid. Anim Behav 77:189–193. doi:10.1016/j.anbehav.2008.09.026

    Article  Google Scholar 

  63. Reddon AR, Gutiérrez-Ibáñez C, Wylie DR, Hurd PL (2009) The relationship between growth, brain asymmetry and behavioural lateralization in a cichlid fish. Behav Brain Res 201:223–228. doi:10.1016/j.bbr.2009.02.015

    Article  PubMed  Google Scholar 

  64. Rogers LJ (1989) Laterality in animals. Int J Comp Psychol 3:5–25

    Google Scholar 

  65. Rogers LJ (2000) Evolution of hemispheric specialization: advantages and disadvantages. Brain Lang 73:236–253. doi:10.1006/brln.2000.2305

    CAS  Article  PubMed  Google Scholar 

  66. Rogers LJ (2009) Hand and paw preferences in relation to the lateralized brain. Philos Trans R Soc B 364:943–954. doi:10.1098/rstb.2008.0225

    CAS  Article  Google Scholar 

  67. Rogers LJ (2010) Relevance of brain and behavioural lateralization to animal welfare. Appl Anim Behav Sci 127:1–11. doi:10.1016/j.applanim.2010.06.008

    Article  Google Scholar 

  68. Rogers LJ, Andrew RJ (2002) Comparative vertebrate lateralization. University Press, Cambridge

    Google Scholar 

  69. Roh E, Mirza RS, Brown GE (2004) Quality or quantity? The role of donor condition in the production of chemical alarm cues in juvenile convict cichlids. Behaviour 141:1235–1248. doi:10.1163/1568539042729667

    Article  Google Scholar 

  70. Ross ED, Homan RW, Buck R (1994) Differential hemispheric lateralization of primary and social emotions—implications for developing a comprehensive neurology for emotions, repression, and the subconscious. Neuropsychiatry Neuropsychol Behav Neurol 7:1–19

    Google Scholar 

  71. Ruxton GD (2006) The unequal variance t-test is an underused alternative to Student’s t-test and the Mann-Whitney U test. Behav Ecol 17:688–690. doi:10.1093/beheco/ark016

    Article  Google Scholar 

  72. Siegel DG (2007) Cheese Webcam Booth (version 2.30.1) [Computer software]. www.projects.gnome.org/cheese. Accessed 18 April 2012

  73. Siniscalchi M, Quaranta A, Rogers LJ (2008) Hemispheric specialization in dogs for processing different acoustic stimuli. PLoS ONE 3:e3349. doi:10.1371/journal.pone.0003349

    Article  PubMed  PubMed Central  Google Scholar 

  74. Smith RJF (1986) Reduced alarm substance cell counts in male and androgen treated zebra danios (Brachydanio rerio). Can J Zoolog 64:551–553. doi:10.1139/z86-080

    Article  Google Scholar 

  75. Smith RJF (1992) Alarm signals in fishes. Rev Fish Biol Fish 2:33–63. doi:10.1007/BF00042916

    Article  Google Scholar 

  76. Snekser JL, Itzkowitz M (2009) Sex differences in retrieval behavior by the biparental convict cichlid. Ethology 115:457–464. doi:10.1111/j.1439-0310.2009.01625.x

    Article  Google Scholar 

  77. Sovrano VA, Andrew RJ (2006) Eye use during viewing a reflection: behavioural lateralisation in zebrafish larvae. Behav Brain Res 167:226–231. doi:10.1016/j.bbr.2005.09.021

    CAS  Article  PubMed  Google Scholar 

  78. Sovrano VA, Rainoldi C, Bisazza A, Vallortigara G (1999) Roots of brain specializations: preferential left-eye use during mirror-image inspection in six species of teleost fish. Behav Brain Res 106:175–180. doi:10.1016/S0166-4328(99)00105-9

    Article  Google Scholar 

  79. Sovrano VA, Bisazza A, Vallortigara G (2001) Lateralization of response to social stimuli in fishes: a comparison between different methods and species. Physiol Behav 74:237–244. doi:10.1016/S0031-9384(01)00552-2

    CAS  Article  PubMed  Google Scholar 

  80. Sutherland RJ (1982) The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neurosci Biobehav Rev 6:1–13. doi:10.1016/0149-7634(82)90003-3

    CAS  Article  PubMed  Google Scholar 

  81. Vallortigara G (1992) Right hemisphere advantage for social recognition in the chick. Neuropsychologia 30:761–768. doi:10.1016/0028-3932(92)90080-6

    CAS  Article  PubMed  Google Scholar 

  82. Vallortigara G (2000) Comparative neuropsychology of the dual brain: a stroll through animals’ left and right perceptual worlds. Brain Lang 73:189–219. doi:10.1006/brln.2000.2303

    CAS  Article  PubMed  Google Scholar 

  83. Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Res 28:575–633. doi:10.1017/S0140525X05000105

    Google Scholar 

  84. Vallortigara G, Rogers LJ, Bisazza A (1999) Possible evolutionary origins of cognitive brain lateralization. Brain Res Rev 30:164–175. doi:10.1016/S0165-0173(99)00012-0

    CAS  Article  PubMed  Google Scholar 

  85. Vallortigara G, Chiandetti C, Sovrano VA (2010) Brain asymmetry (animal). WIREs Cogn Sci 2:146–157. doi:10.1002/wcs.100

    Article  Google Scholar 

  86. Vavrek MA, Brown GE (2009) Threat-sensitive responses to disturbance cues in juvenile convict cichlids and rainbow trout. Ann Zool Fenn 46:171–180

    Article  Google Scholar 

  87. Wahlsten D (1990) Insensitivity of the analysis of variance to heredity–environment interaction. Behav Brain Sci 13:109–161. doi:10.1017/S0140525X00077797

    Article  Google Scholar 

  88. Wahlsten D (1991) Sample size to detect a planned contrast and a one degree-of-freedom interaction effect. Psychol Bull 110:587–595. doi:10.1037/0033-2909.110.3.587

    Article  Google Scholar 

  89. Wahlsten D (1999) Experimental design and statistical inference. In: Crusio WE, Gerlai RT (eds) Handbook of molecular-genetic-techniques for brain and behavior research. Elsevier, Amsterdam, pp 40–57

    Google Scholar 

  90. Wahlsten D (2000) Analysis of variance in the service of interactionism. Hum Dev 43:46–50. doi:10.1159/000022655

    Article  Google Scholar 

  91. Wisenden BD, Sargent RC (1997) Antipredator behavior and suppressed aggression by convict cichlids in response to injury-released chemical cues of conspecifics but not to those of an allopatric heterospecific. Ethology 103:283–291. doi:10.1111/j.1439-0310.1997.tb00018.x

    Article  Google Scholar 

  92. Wittling W, Pfluger M (1990) Neuroendocrine hemisphere asymmetries: salivary cortisol secretion during lateralized viewing of emotion-related and neutral films. Brain Cognit 14:243–265. doi:10.1016/0278-2626(90)90032-J

    CAS  Article  Google Scholar 

  93. Wittling W, Block A, Schweiger E, Genzel S (1998) Hemisphere asymmetry in sympathetic control of the human myocardium. Brain Cognit 38:17–35. doi:10.1006/brcg.1998.1000

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Isaac Lank for constructing each behavioural apparatus.

Funding

This research was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Canada Graduate Scholarship-Doctoral (CGS-D), an Alberta Ingenuity Studentship, and a Dissertation Fellowship from the University of Alberta to MKM and an NSERC Discovery Grant (Grant #: 249685) to PLH.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michele K. Moscicki.

Ethics declarations

Conflict of interest

Both authors declare that they have no conflict of interest.

Ethical approval

All protocols were approved by the University of Alberta Biological Sciences Animal Policy and Welfare Committee (Protocol Number 5441006). Animals were housed and cared for in accordance with the standards set forth by the Canadian Council on Animal Care (CCAC). All applicable national and institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moscicki, M.K., Hurd, P.L. Damage-induced alarm cues influence lateralized behaviour but not the relationship between behavioural and habenular asymmetry in convict cichlids (Amatitlania nigrofasciata). Anim Cogn 20, 537–551 (2017). https://doi.org/10.1007/s10071-017-1081-y

Download citation

Keywords

  • Convict cichlid
  • Stress
  • Cognitive bias
  • Emotional lateralization
  • Damage-induced alarm cues
  • Habenula