Visual perception in domestic dogs: susceptibility to the Ebbinghaus–Titchener and Delboeuf illusions

Abstract

Susceptibility to geometrical visual illusions has been tested in a number of non-human animal species, providing important information about how these species perceive their environment. Considering their active role in human lives, visual illusion susceptibility was tested in domestic dogs (Canis familiaris). Using a two-choice simultaneous discrimination paradigm, eight dogs were trained to indicate which of two presented circles appeared largest. These circles were then embedded in three different illusory displays; a classical display of the Ebbinghaus–Titchener illusion; an illusory contour version of the Ebbinghaus–Titchener illusion; and the classical display of the Delboeuf illusion. Significant results were observed in both the classical and illusory contour versions of the Ebbinghaus–Titchener illusion, but not the Delboeuf illusion. However, this susceptibility was reversed from what is typically seen in humans and most mammals. Dogs consistently indicated that the target circle typically appearing larger in humans appeared smaller to them, and that the target circle typically appearing smaller in humans, appeared larger to them. We speculate that these results are best explained by assimilation theory rather than other visual cognitive theories explaining susceptibility to this illusion in humans. In this context, we argue that our findings appear to reflect higher-order conceptual processing in dogs that cannot be explained by accounts restricted to low-level mechanisms of early visual processing.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aglioti S, DeSouza JF, Goodale MA (1995) Size-contrast illusions deceive the eye but not the hand. Curr Biol 5:679–685

    CAS  Article  PubMed  Google Scholar 

  2. Bensky MK, Gosling SD, Sinn DL (2013) The world from a dog’s point of view: a review and synthesis of dog cognition research. Adv Study Anim Behav 45:209–406

    Article  Google Scholar 

  3. Caramazza A, Mahon BZ (2006) The organisation of conceptual knowledge in the brain: the future’s past and some future directions. Cogn Neuropsy 23:13–38

    Article  Google Scholar 

  4. Choplin JM, Medin DL (1999) Similarity of the perimeters in the Ebbinghaus illusion. Percept Psychophys 61:3–12

    CAS  Article  PubMed  Google Scholar 

  5. Chouinard PA, Noulty WA, Sperandio I, Landry O (2013) Global processing during the Müller-Lyer illusion is distinctively affected by the degree of autistic traits in the typical population. Exp Brain Res 230:219–231

    Article  PubMed  Google Scholar 

  6. Chouinard PA, Unwin KL, Landry O, Sperandio I (2016) Susceptibility to optical illusions varies as a function of the autism-spectrum quotient but not in ways predicted by local–global biases. J Autism Dev Disord 46:2224–2239

    Article  PubMed  Google Scholar 

  7. Cobb M, Branson N, McGreevy P, Lill A, Bennett P (2015) The advent of canine performance science: offering a sustainable future for working dogs. Behav Process 110:96–104. doi:10.1016/j.beproc.2014.10.012

    Article  Google Scholar 

  8. Coren S, Enns JT (1993) Size contrast as a function of conceptual similarity between test and inducers. Percept Psychophys 54:579–588

    CAS  Article  PubMed  Google Scholar 

  9. Coren S, Miller J (1974) Size contrast as a function of figural similarity. Percept Psychophys 16:355–357

    Article  Google Scholar 

  10. de Fockert J, Davidoff J, Fagot J, Parron C, Goldstein J (2007) More accurate size contrast judgments in the Ebbinghaus Illusion by a remote culture. J Exp Psychol Hum Percept Perform 33:738

    Article  PubMed  Google Scholar 

  11. de Grave DD, Biegstraaten M, Smeets JB, Brenner E (2005) Effects of the Ebbinghaus figure on grasping are not only due to misjudged size. Exp Brain Res 163:58–64

    Article  PubMed  Google Scholar 

  12. Duke-Elder S (1958) System of ophthalmology vol. 1. The eye in evolution. Henry Kimpton, London

    Google Scholar 

  13. Eagleman DM (2001) Visual illusions and neurobiology. Nat Rev Neurosci 2:920–926

    CAS  Article  PubMed  Google Scholar 

  14. Feng LC, Chouinard PA, Howell TJ, Bennett PC (2016) Why do animals differ in their susceptibility to geometrical illusions? Psychon Bull Rev. doi:10.3758/s13423-016-1133-3

    Google Scholar 

  15. Gellermann LW (1933) Chance orders of alternating stimuli in visual discrimination experiments. Pedagog Semin J Genet Psychol 42(1):206–208

    Article  Google Scholar 

  16. Girgus JS, Coren S, Agdern M (1972) The interrelationship between the Ebbinghaus and Delboeuf illusions. J Exp Psychol 95:453

    CAS  Article  PubMed  Google Scholar 

  17. Gold JM (2014) Information processing correlates of a size-contrast illusion. Front Psychol 5:142

    PubMed  PubMed Central  Google Scholar 

  18. Gregory RL (1980) Perceptions as hypotheses. Philos Trans R Soc B 290:181–197

    CAS  Article  Google Scholar 

  19. Gregory RL (2015) Eye and brain: the psychology of seeing. Princeton University Press, Princeton NJ

    Google Scholar 

  20. Haber RN, Hershenson M (1973) The psychology of visual perception. Holt, Rinehart & Winston, New York

    Google Scholar 

  21. Hare B, Tomasello M (1999) Domestic dogs (Canis familiaris) use human and conspecific social cues to locate hidden food. J Comp Psychol 113:173

    Article  Google Scholar 

  22. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Huber L, Racca A, Scaf B, Virányi Z, Range F (2013) Discrimination of familiar human faces in dogs (Canis familiaris). Learn Motiv 44:258–269

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jacobs GH (1983) Colour vision in animals. Endeavour 7:137–140

    CAS  Article  PubMed  Google Scholar 

  25. Kanizsa G, Renzi P, Conte S, Compostela C, Guerani L (1993) Amodal completion in mouse vision. Perception 22:713–721

    CAS  Article  PubMed  Google Scholar 

  26. Kelley LA, Kelley JL (2014) Animal visual illusion and confusion: the importance of a perceptual perspective. Behav Ecol 25:450–463

    Article  Google Scholar 

  27. Kemp C, Jacobson S (1992) Rhodopsin levels in the central retinas of normal miniature poodles and those with progressive rod-cone degeneration. Exp Eye Res 54:947–956

    CAS  Article  PubMed  Google Scholar 

  28. King DL (1988) Assimilation is due to one perceived whole and contrast is due to two perceived wholes. New Ideas Psychol 6:277–288. doi:10.1016/0732-118X(88)90039-6

    Article  Google Scholar 

  29. Koffka K (1935) Principles of Gestalt psychology. Harcourt Brace, New York

    Google Scholar 

  30. Lazareva OF, Wasserman EA, Young ME (2005) Transposition in pigeons: reassessing spence (1937) with multiple discrimination training. Anim Learn Behav 33:22–46

    Article  Google Scholar 

  31. Lazareva OF, Miner M, Wasserman EA, Young ME (2008) Multiple-pair training enhances transposition in pigeons. Learn Behav 36:174–187

    Article  PubMed  Google Scholar 

  32. Lazareva OF, Young ME, Wasserman EA (2014) A three-component model of relational responding in the transposition paradigm. J Exp Psych Anim Learn Cognit 40:63

    Article  Google Scholar 

  33. Livingstone M, Hubel D (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240:740–749

    CAS  Article  PubMed  Google Scholar 

  34. Massaro DW, Anderson NH (1971) Judgmental model of the Ebbinghaus illusion. J Exp Psychol 89:147

    CAS  Article  PubMed  Google Scholar 

  35. McGreevy P, Grassi TD, Harman AM (2003) A strong correlation exists between the distribution of retinal ganglion cells and nose length in the dog. Brain Behav Evol 63:13–22

    Article  Google Scholar 

  36. Miletto Petrazzini ME, Bisazza A, Agrillo C (2016) Do domestic dogs (Canis lupus familiaris) perceive the Delboeuf illusion? Anim Cogn. doi:10.1007/s10071-016-1066-2

    PubMed  Google Scholar 

  37. Miller PE, Murphy CJ (1995) Vision in dogs. J Am Vet Med Assoc 207:1623–1634

    CAS  PubMed  Google Scholar 

  38. Mongillo P, Pitteri E, Sambugaro P, Carnier P, Marinelli L (2016) Global bias reliability in dogs (Canis familiaris). Anim Cognit. doi:10.1007/s10071-016-1044-8

    Google Scholar 

  39. Murayama T, Usui A, Takeda E, Kato K, Maejima K (2012) Relative size discrimination and perception of the Ebbinghaus illusion in a bottlenose dolphin (Tursiops truncatus). Aquat Mamm 38:333

    Article  Google Scholar 

  40. Nagasawa M, Murai K, Mogi K, Kikusui T (2011) Dogs can discriminate human smiling faces from blank expressions. Anim Cognit 14:525–533

    Article  Google Scholar 

  41. Nakamura N, Watanabe S, Fujita K (2008) Pigeons perceive the Ebbinghaus–Titchener circles as an assimilation illusion. J Exp Psychol Anim Behav Proc 34:375

    Article  Google Scholar 

  42. Nakamura N, Watanabe S, Fujita K (2014) A reversed Ebbinghaus–Titchener illusion in bantams (Gallus gallus domesticus). Anim Cognit 17:471–481

    Article  Google Scholar 

  43. Navon D (1977) Forest before trees: the precedence of global features in visual perception. Cognit Psychol 9:353–383

    Article  Google Scholar 

  44. Neitz J, Geist T, Jacobs GH (1989) Color vision in the dog. Vis Neurosci 3:119–125

    CAS  Article  PubMed  Google Scholar 

  45. Ninio J (1998) La science des illusions. Odile Jacob, Paris

    Google Scholar 

  46. Parrish AE, Beran MJ (2014) When less is more: like humans, chimpanzees (Pan troglodytes) misperceive food amounts based on plate size. Anim Cognit 17:427–434

    Article  Google Scholar 

  47. Parrish AE, Brosnan SF, Beran MJ (2015) Do you see what I see? A comparative investigation of the Delboeuf illusion in humans (Homo sapiens), rhesus monkeys (Macaca mulatta), and capuchin monkeys (Cebus apella). J Exp Psychol Anim Learn Cognit 41:395

    Article  Google Scholar 

  48. Parron C, Fagot J (2007) Comparison of grouping abilities in humans (Homo sapiens) and baboons (Papio papio) with the Ebbinghaus illusion. J Comp Psychol 121:405

    Article  PubMed  Google Scholar 

  49. Peichlcu L (1992) Topography of ganglion cells in the dog and wolf retina. J Comp Neurol 324:603–620

    Article  Google Scholar 

  50. Pitteri E, Mongillo P, Carnier P, Marinelli L (2014) Hierarchical stimulus processing by dogs (Canis familiaris). Anim Cognit 17:869–877

    Article  Google Scholar 

  51. Pressey AW, Di Lollo V, Tait RW (1977) Effects of gap size between shaft and fins and of angle of fins on the Müller–Lyer illusion. Perception 6:435–439

    CAS  Article  PubMed  Google Scholar 

  52. Pylyshyn Z (1999) Is vision continuous with cognition?: the case for cognitive impenetrability of visual perception. Behav Brain Sci 22:341–365

    CAS  PubMed  Google Scholar 

  53. Racca A, Amadei E, Ligout S, Guo K, Meints K, Mills D (2010) Discrimination of human and dog faces and inversion responses in domestic dogs (Canis familiaris). Anim Cognit 13:525–533

    Article  Google Scholar 

  54. Range F, Aust U, Steurer M, Huber L (2008) Visual categorization of natural stimuli by domestic dogs. Anim Cognit 11:339–347

    Article  Google Scholar 

  55. Roberts T, McGreevy P, Valenzuela M (2010) Human induced rotation and reorganization of the brain of domestic dogs. PLoS ONE 5:e11946

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rosengren A (1969) Experiments in colour discrimination in dogs. Acta Zool Fenn 121:3–19

    Google Scholar 

  57. Salva OR, Rugani R, Cavazzana A, Regolin L, Vallortigara G (2013) Perception of the Ebbinghaus illusion in four-day-old domestic chicks (Gallus gallus). Anim Cognit 16:895–906

    Article  Google Scholar 

  58. Sherman JA, Chouinard PA (2016) Attractive contours of the Ebbinghaus illusion. Percept Mot Skills 122:88–95

    Article  PubMed  Google Scholar 

  59. Sherman SM, Wilson JR (1975) Behavioral and morphological evidence for binocular competition in the postnatal development of the dog’s visual system. J Comp Neurol 161:183–195

    CAS  Article  PubMed  Google Scholar 

  60. Soproni K, Miklósi Á, Topál J, Csányi V (2001) Comprehension of human communicative signs in pet dogs (Canis familiaris). J Comp Psychol 115:122

    CAS  Article  PubMed  Google Scholar 

  61. Soproni K, Miklósi A, Topál J, Csányi V (2002) Dogs’(Canis familaris) responsiveness to human pointing gestures. J Comp Psychol 116:27

    Article  PubMed  Google Scholar 

  62. Sovrano VA, Albertazzi L, Salva OR (2014) The Ebbinghaus illusion in a fish (Xenotoca eiseni). Anim Cognit 18:533–542

    Article  Google Scholar 

  63. Tanaka T, Watanabe T, Eguchi Y, Yoshimoto T (2000) Color discrimination in dogs. Nihon Chik Gakk 71:300–304. doi:10.2508/chikusan.71.300

    Article  Google Scholar 

  64. Tapp PD et al (2004) Concept abstraction in the aging dog: development of a protocol using successive discrimination and size concept tasks. Behav Brain Res 153:199–210. doi:10.1016/j.bbr.2003.12.003

    Article  PubMed  Google Scholar 

  65. Udell MA, Wynne CD (2008) A review of domestic dogs’ (canis familiaris) human-like behavior: or why behavior analysts should stop worrying and love their dogs. J Exp Anal Behav 89:247–261

    Article  PubMed  PubMed Central  Google Scholar 

  66. Udell MA, Dorey NR, Wynne CD (2008) Wolves outperform dogs in following human social cues. Anim Behav 76:1767–1773

    Article  Google Scholar 

  67. Von Helmholtz H (1867) Handbuch der physiologischen Optik, vol 9. Voss, Leipzig

    Google Scholar 

  68. Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science, Bloomfield MI

    Google Scholar 

  69. Weintraub DJ (1979) Ebbinghaus illusion: context, contour, and age influence the judged size of a circle amidst circles. J Exp Psychol Hum Percept Perform 5:353

    CAS  Article  PubMed  Google Scholar 

  70. Zigler E (1960) Size estimates of circles as a function of size of adjacent circles. Percept Mot Skills 11:47–53

    Article  Google Scholar 

  71. Zigler E, Phillips L (1960) Social effectiveness and symptomatic behaviors. J Abnorm Soc Psychol 61:231

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Joyce Wuister and Diana Rayment for their help during the data collection process and Eva Worden for her help during the training process. We also thank two anonymous reviewers for their comprehensive and insightful reviews, as well as Maria Elena Miletto Petrazzini, Angelo Bisazza, and Christian Agrillo, for sharing the results of Miletto Petrazzini et al. (2016) prior to publication.

Funding

This research was carried out with the support of La Trobe University Postgraduate Research Scholarships and La Trobe University Full Fee Research Scholarships.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarah-Elizabeth Byosiere.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in the following experiments were in accordance with the ethical standards of La Trobe University Animal Ethics Committee (Approval Number: AEC15-18).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 112796 kb)

Supplementary material 2 (DOCX 5349 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Byosiere, S., Feng, L.C., Woodhead, J.K. et al. Visual perception in domestic dogs: susceptibility to the Ebbinghaus–Titchener and Delboeuf illusions. Anim Cogn 20, 435–448 (2017). https://doi.org/10.1007/s10071-016-1067-1

Download citation

Keywords

  • Ebbinghaus–Titchener
  • Delboeuf
  • Domestic dog
  • Geometrical illusion
  • Perception
  • Illusory contours