Advertisement

Animal Cognition

, Volume 20, Issue 3, pp 409–418 | Cite as

Social spatial cognition in rat tetrads: how they select their partners and their gathering places

Original Paper

Abstract

Spatial organization is an extensively studied field, in which most of the research has been on how the physical environment is perceived and conceived. There is a consensus that physical attributes such as environment geometry and landmarks are key factors in shaping spatial cognition. Nevertheless, the numerous studies of spatial behavior have usually been carried out on individuals, thereby overlooking the possible impact of the social environment. In the present study, rats were exposed to an unfamiliar open-field, first alone and then in tetrads of unfamiliar individuals, in order to monitor and analyze when and how their individual spatial behavior converged to a group spatial behavior. We found that the unfamiliar rats spent most of their time in companionship, first with preferred partners and ultimately as a quartet. Specifically, group formation was dynamic and gradual, with the rats first forming duos, then trios, and ultimately a quartet. Trios and quartets mostly huddled in the same specific corner that became a shared home base, from which they took solo or duo roundtrips to the arena. The present study unveils how, by means of gradual interactions among self, place, and conspecifics, four unfamiliar rats organized together their social spatial behavior.

Keywords

Spatial representation Exploration Social environment Social cognition Group formation 

Notes

Acknowledgements

This study was supported by the Israel Science Foundation Grant 230/13 to DE. We are grateful to Naomi Paz for language editing. DE is a Visiting Professor at the Department of OTANES, University of South Africa.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This study and the maintenance conditions for the rats were carried out under the regulations and approval of the Institutional Committee for Animal Experimentation at Tel-Aviv University (permit # L-14-026).

References

  1. Amici F, Aureli F, Call J (2008) Fission–fusion dynamics, behavioral flexibility, and inhibitory control in primates. Curr Biol 18:1415–1419. doi: 10.1016/j.cub.2008.08.020 CrossRefPubMedGoogle Scholar
  2. Ancona DG, Goodman PS, Lawrence BS, Tushman ML (2001) Time: a new research lens. Acad Manag Rev 26:645–663. doi: 10.5465/amr.2001.5393903 Google Scholar
  3. Arrow H, Poole MS, Henry KB et al (2004) Time, change, and development: the temporal perspective on groups. Small Group Res 35:73–105. doi: 10.1177/1046496403259757 CrossRefGoogle Scholar
  4. Ballard DI, Tschan F, Waller MJ (2008) All in the timing: considering time at multiple stages of group research. Small Group Res 39:328–351. doi: 10.1177/1046496408317036 CrossRefGoogle Scholar
  5. Bar-Yam Y (1997) Dynamics of complex systems. Addison-Wesley, ReadingGoogle Scholar
  6. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: Proceedings of international AAAI conference on web and social media, pp 361–362Google Scholar
  7. Ben-Yehoshua D, Yaski O, Eilam D (2011) Spatial behavior: the impact of global and local geometry. Anim Cogn 14:341–350. doi: 10.1007/s10071-010-0368-z CrossRefPubMedGoogle Scholar
  8. Bernstein IS, Mason WA (1963) Group formation by Rhesus monkeys. Anim Behav 11:28–31. doi: 10.1016/0003-3472(63)90004-6 CrossRefGoogle Scholar
  9. Bowen MT, Keats K, Kendig MD et al (2012) Aggregation in quads but not pairs of rats exposed to cat odor or bright light. Behav Process 90:331–336. doi: 10.1016/j.beproc.2012.03.014 CrossRefGoogle Scholar
  10. Cheng K (1986) A purely geometric module in the rat’s spatial representation. Cognition 23:149–178. doi: 10.1016/0010-0277(86)90041-7 CrossRefPubMedGoogle Scholar
  11. Cheng K (2005) Reflections on geometry and navigation. Conn Sci 17:5–21. doi: 10.1080/09540090500138077 CrossRefGoogle Scholar
  12. Cheng K (2008) Whither geometry? Troubles of the geometric module. Trends Cogn Sci 12:355–361. doi: 10.1016/j.tics.2008.06.004 CrossRefPubMedGoogle Scholar
  13. Cheng K, Newcombe NS (2005) Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychon Bull Rev 12:1–23. doi: 10.3758/BF03196346 CrossRefPubMedGoogle Scholar
  14. Cheng K, Spetch ML (1998) Mechanisms of landmark use in mammals and birds. In: Healy SD (ed) Spatial representation in animals. Oxford University Press, New York, pp 1–17Google Scholar
  15. Clark BJ, Hamilton DA, Whishaw IQ (2006) Motor activity (exploration) and formation of home bases in mice (C57BL/6) influenced by visual and tactile cues: modification of movement distribution, distance, location, and speed. Physiol Behav 87:805–816. doi: 10.1016/j.physbeh.2006.01.026 CrossRefPubMedGoogle Scholar
  16. Collett T (1996) Insect navigation en route to the goal: multiple strategies for the use of landmarks. J Exp Biol 199:227–235CrossRefPubMedGoogle Scholar
  17. Couzin ID (2006) Behavioral ecology: social organization in fission–fusion societies. Curr Biol 16:R169–R171. doi: 10.1016/j.cub.2006.02.042 CrossRefPubMedGoogle Scholar
  18. Cross PC, Lloyd-Smith JO, Getz WM (2005) Disentangling association patterns in fission–fusion societies using African buffalo as an example. Anim Behav 69:499–506. doi: 10.1016/j.anbehav.2004.08.006 CrossRefGoogle Scholar
  19. Dorfman A, Nielbo KL, Eilam D (2016) Traveling companions add complexity and hinder performance in the spatial behavior of rats. PLoS ONE 11:e0146137. doi: 10.1371/journal.pone.0146137 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Eichenbaum H (2014) Time cells in the hippocampus: a new dimension for mapping memories. Nat Rev Neurosci 15:732–744. doi: 10.1038/nrn3827 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Eichenbaum H (2015) The hippocampus as a cognitive map … of social space. Neuron 87:9–11. doi: 10.1016/j.neuron.2015.06.013 CrossRefPubMedGoogle Scholar
  22. Eilam D (2014) Of mice and men: building blocks in cognitive mapping. Neurosci Biobehav Rev 47:393–409. doi: 10.1016/j.neubiorev.2014.09.010 CrossRefPubMedGoogle Scholar
  23. Eilam D, Golani I (1989) Home base behavior of rats (Rattus norvegicus) exploring a novel environment. Behav Brain Res 34:199–211. doi: 10.1016/S0166-4328(89)80102-0 CrossRefPubMedGoogle Scholar
  24. Etienne AS, Maurer R, Séguinot V (1996) Path integration in mammals and its interaction with visual landmarks. J Exp Biol 199:201–209PubMedGoogle Scholar
  25. Etienne AS, Boulens V, Maurer R et al (2000) A brief view of known landmarks reorientates path integration in hamsters. Naturwissenschaften 87:494–498. doi: 10.1007/s001140050766 CrossRefPubMedGoogle Scholar
  26. Forsyth DR (2006) Group dynamics, 4th edn. Thomson Higher Education, BelmontGoogle Scholar
  27. Gallistel CR, Matzel LD (2013) The neuroscience of learning: beyond the Hebbian synapse. Annu Rev Psychol 64:169–200. doi: 10.1146/annurev-psych-113011-143807 CrossRefPubMedGoogle Scholar
  28. Golledge RG (ed) (1999) Human wayfinding and cognitive maps. In: Wayfinding behavior: cognitive mapping and other spatial processes. The Johns Hopkins University Press, pp 5–45Google Scholar
  29. Gouteux S, Thinus-Blanc C, Vauclair J (2001) Rhesus monkeys use geometric and nongeometric information during a reorientation task. J Exp Psychol Gen 130:505–519. doi: 10.1037/0096-3445.130.3.505 CrossRefPubMedGoogle Scholar
  30. Hafting T, Fyhn M, Molden S et al (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806. doi: 10.1038/nature03721 CrossRefPubMedGoogle Scholar
  31. Heider F (1958) The psychology of interpersonal relations. J Mark 56:322. doi: 10.1037//0022-3514.46.1.57 Google Scholar
  32. Hines DJ, Whishaw IQ (2005) Home bases formed to visual cues but not to self-movement (dead reckoning) cues in exploring hippocampectomized rats. Eur J Neurosci 22:2363–2375. doi: 10.1111/j.1460-9568.2005.04412.x CrossRefPubMedGoogle Scholar
  33. Keller MR, Brown MF (2011) Social effects on rat spatial choice in an open field task. Learn Motiv 42:123–132. doi: 10.1016/j.lmot.2010.12.004 CrossRefGoogle Scholar
  34. Kropff E, Carmichael JE, Moser M-B, Moser EI (2015) Speed cells in the medial entorhinal cortex. Nature 523:419–424. doi: 10.1038/nature14622 CrossRefPubMedGoogle Scholar
  35. Kummer H (1971) Primate societies: group techniques of ecological adaptation. Aldine Transaction, PiscatawayGoogle Scholar
  36. Maaswinkel H, Gispen WH, Spruijt BM (1997) Executive function of the hippocampus in social behavior in the rat. Behav Neurosci 111:777–784. doi: 10.1037/0735-7044.111.4.777 CrossRefPubMedGoogle Scholar
  37. Mintz M, Russig H, Lacroix L, Feldon J (2005) Sharing of the home base: a social test in rats. Behav Pharmacol 16:227–236CrossRefPubMedGoogle Scholar
  38. Newcomb TM (1961) The acquaintance process. Holt, Rinehart & Winston, New YorkCrossRefGoogle Scholar
  39. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175. doi: 10.1016/0006-8993(71)90358-1 CrossRefPubMedGoogle Scholar
  40. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map, vol 3. Clarendon Press, OxfordGoogle Scholar
  41. Ohayon S, Avni O, Taylor AL et al (2013) Automated multi-day tracking of marked mice for the analysis of social behaviour. J Neurosci Methods 219:10–19. doi: 10.1016/j.jneumeth.2013.05.013 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Pearce JM, Ward-Robinson J, Good M et al (2001) Influence of a beacon on spatial learning based on the shape of the test environment. J Exp Psychol Anim Behav Process 27:329–344. doi: 10.1037/0097-7403.27.4.329 CrossRefPubMedGoogle Scholar
  43. Popa-Lisseanu AG, Bontadina F, Mora O, Ibañez C (2008) Highly structured fission–fusion societies in an aerial-hawking, carnivorous bat. Anim Behav 75:471–482. doi: 10.1016/j.anbehav.2007.05.011 CrossRefGoogle Scholar
  44. Portugali J, Yaski O, Eilam D (2011) Arena geometry and path shape: when rats travel in straight or in circuitous paths? Behav Brain Res 225:449–454. doi: 10.1016/j.bbr.2011.07.055 CrossRefPubMedGoogle Scholar
  45. Proulx MJ, Todorov OS, Taylor Aiken A, de Sousa AA (2016) Where am I? Who am I? The relation between spatial cognition, social cognition and individual differences in the built environment. Front Psychol 7:64. doi: 10.3389/fpsyg.2016.00064 PubMedPubMedCentralGoogle Scholar
  46. Ramos-Fernnandez G, Morales JM (2014) Unraveling fission–fusion dynamics: how subgroup properties and dyadic interactions influence individual decisions. Behav Ecol Sociobiol 68:1225–1235. doi: 10.1007/s00265-014-1733-8 CrossRefGoogle Scholar
  47. Schiller D, Eichenbaum H, Buffalo EA et al (2015) Memory and space: towards an understanding of the cognitive map. J Neurosci 35:13904–13911. doi: 10.1523/JNEUROSCI.2618-15.2015 CrossRefPubMedGoogle Scholar
  48. Shelton AL, Clements-Stephens AM, Lam WY et al (2012) Should social savvy equal good spatial skills? The interaction of social skills with spatial perspective taking. J Exp Psychol Gen 141:199–205. doi: 10.1037/a0024617 CrossRefPubMedGoogle Scholar
  49. Shemesh Y, Sztainberg Y, Forkosh O et al (2013) High-order social interactions in groups of mice. Elife 2:1–19. doi: 10.7554/eLife.00759 CrossRefGoogle Scholar
  50. Shi Q, Ishii H, Kinoshita S et al (2013) Modulation of rat behaviour by using a rat-like robot. Bioinspir Biomim 8:1–10. doi: 10.1088/1748-3182/8/4/046002 CrossRefGoogle Scholar
  51. Shi Q, Ishii H, Tanaka K et al (2015) Behavior modulation of rats to a robotic rat in multi-rat interaction. Bioinspir Biomim 10:56011. doi: 10.1088/1748-3190/10/5/056011 CrossRefGoogle Scholar
  52. Smith JE, Kolowski JM, Graham KE et al (2008) Social and ecological determinants of fission–fusion dynamics in the spotted hyaena. Anim Behav 76:619–636. doi: 10.1016/j.anbehav.2008.05.001 CrossRefGoogle Scholar
  53. Smith-Aguilar SE, Ramos-fernández G, Getz WM (2016) Seasonal changes in socio-spatial structure in a group of free-living spider monkeys (Ateles geoffroyi). PLoS ONE 11:1–28. doi: 10.1371/journal.pone.0157228 CrossRefGoogle Scholar
  54. Solstad T, Boccara CN, Kropff E et al (2008) Representation of geometric borders in the entorhinal cortex. Science 322(5909):1865–1868. doi: 10.1126/science.1166466 CrossRefPubMedGoogle Scholar
  55. Song C, Qu Z, Blumm N, Barabási A-L (2010) Limits of predictability in human mobility. Science 327:1018–1021. doi: 10.1126/science.1177170 CrossRefPubMedGoogle Scholar
  56. Sovrano VA, Bisazza A, Vallortigara G (2005) Animals’ use of landmarks and metric information to reorient: effects of the size of the experimental space. Cognition 97:121–133. doi: 10.1016/j.cognition.2004.08.003 CrossRefPubMedGoogle Scholar
  57. Sundaresan SR, Fischhoff IR, Dushoff J, Rubenstein DI (2007) Network metrics reveal differences in social organization between two fission–fusion species, Grevy’s zebra and onager. Oecologia 151:140–149. doi: 10.1007/s00442-006-0553-6 CrossRefPubMedGoogle Scholar
  58. Symington MM (1990) Fission–fusion social organization in Ateles and Pan. Int J Primatol 11:47–61. doi: 10.1007/BF02193695 CrossRefGoogle Scholar
  59. Taube JS, Muller RU, Ranck JB (1990a) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 10:420–435PubMedGoogle Scholar
  60. Taube JS, Muller RU, Ranck JB (1990b) Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J Neurosci 10:436–447PubMedGoogle Scholar
  61. Tavares RM, Mendelsohn A, Grossman Y et al (2015) A map for social navigation in the human brain. Neuron 87:231–243. doi: 10.1016/j.neuron.2015.06.011 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208. doi: 10.1037/h0061626 CrossRefPubMedGoogle Scholar
  63. Tuckman BW (1965) Developmental sequence in small groups. Psychol Bull 63:384–399. doi: 10.1037/h0022100 CrossRefPubMedGoogle Scholar
  64. van Schaik CP (1999) The socioecology of fission–fusion sociality in orangutans. Primates 40:69–86. doi: 10.1007/BF02557703 CrossRefPubMedGoogle Scholar
  65. Walsh V (2003) A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn Sci 7:483–488. doi: 10.1016/j.tics.2003.09.002 CrossRefPubMedGoogle Scholar
  66. Wang M-Y, Brennan CH, Lachlan RF, Chittka L (2015) Speed–accuracy trade-offs and individually consistent decision making by individuals and dyads of zebrafish in a colour discrimination task. Anim Behav. doi: 10.1016/j.anbehav.2015.01.022 Google Scholar
  67. Weiss O, Segev E, Eilam D (2015) “Shall two walk together except they be agreed?” Spatial behavior in rat dyads. Anim Cogn 18:39–51. doi: 10.1007/s10071-014-0775-7 CrossRefPubMedGoogle Scholar
  68. Weissbrod A, Shapiro A, Vasserman G et al (2013) Automated long-term tracking and social behavioural phenotyping of animal colonies within a semi-natural environment. Nat Commun 4:1–10. doi: 10.1038/ncomms3018 CrossRefGoogle Scholar
  69. Yaski O, Eilam D (2008) How do global and local geometries shape exploratory behavior in rats? Behav Brain Res 187:334–342. doi: 10.1016/j.bbr.2007.09.027 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of ZoologyTel-Aviv UniversityRamat-AvivIsrael
  2. 2.Department of Applied MathematicsHolon Institute of TechnologyHolonIsrael

Personalised recommendations