Skip to main content

Effects of landmark distance and stability on accuracy of reward relocation

Abstract

Although small-scale navigation is well studied in a wide range of species, much of what is known about landmark use by vertebrates is based on laboratory experiments. To investigate how vertebrates in the wild use landmarks, we trained wild male rufous hummingbirds to feed from a flower that was placed in a constant spatial relationship with two artificial landmarks. In the first experiment, the landmarks and flower were 0.25, 0.5 or 1 m apart and we always moved them 3–4 m after each visit by the bird. In the second experiment, the landmarks and flower were always 0.25 m apart and we moved them either 1 or 0.25 m between trials. In tests, in which we removed the flower, the hummingbirds stopped closer to the predicted flower location when the landmarks had been closer to the flower during training. However, while the distance that the birds stopped from the landmarks and predicted flower location was unaffected by the distance that the landmarks moved between trials, the birds directed their search nearer to the predicted direction of the flower, relative to the landmarks, when the landmarks and flower were more stable in the environment. In the field, then, landmarks alone were sufficient for the birds to determine the distance of a reward but not its direction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Batschelet E (1981) Circular statistics in biology. Academic Press, London

    Google Scholar 

  2. Biegler R, Morris RG (1993) Landmark stability is a prerequisite for spatial but not discrimination learning. Nature 361:631–633

    CAS  Article  PubMed  Google Scholar 

  3. Biegler R, Morris R (1996) Landmark stability: studies exploring whether the perceived stability of the environment influences spatial representation. J Exp Biol 199:187–193

    CAS  PubMed  Google Scholar 

  4. Chamizo VD, Manteiga RD, Rodrigo T, Mackintosh NJ (2006) Competition between landmarks in spatial learning: the role of proximity to the goal. Behav Processes 71:59–65. doi:10.1016/j.beproc.2005.11.003

    CAS  Article  PubMed  Google Scholar 

  5. Cheng K (1988) Some psychophysics of the pigeon’s use of landmarks. J Comp Physiol A 162:815–826

    CAS  Article  PubMed  Google Scholar 

  6. Cheng K (1989) The vector sum model of pigeon landmark use. J Exp Psychol Anim Behav Process 15(4):366–375

    Article  Google Scholar 

  7. Cheng K (1990) More psychophysics of the pigeon’s use of landmarks. J Comp Physiol A 166:857–863. doi:10.1007/BF00187333

    Article  Google Scholar 

  8. Cheng K (1994) The determination of direction in landmark-based spatial search in pigeons: a further test of the vector sum model. Anim Learn Behav 22:291–301. doi:10.3758/BF03209837

    Article  Google Scholar 

  9. Cheng K (1998) Distances and directions are computed separately by honeybees in landmark-based search. Anim Learn Behav 26:455–468. doi:10.3758/BF03199239

    Article  Google Scholar 

  10. Cheng K, Spetch ML, Kelly DM, Bingman VP (2006) Small-scale spatial cognition in pigeons. Behav Processes 72:115–127. doi:10.1016/j.beproc.2005.11.018

    Article  PubMed  Google Scholar 

  11. Collett TS, Cartwright BA, Smith BA (1986) Landmark learning and visuo-spatial memories in gerbils. J Comp Physiol A 158:835–851. doi:10.1007/BF01324825

    CAS  Article  PubMed  Google Scholar 

  12. Dyer F (1998) Cognitive ecology of navigation. In: Dukas R (ed) Cogn. Ecol. University of Chicago Press, Chicago, Illinois, pp 201–260

  13. Flores-Abreu IN, Hurly TA, Healy SD (2012) One-trial spatial learning: wild hummingbirds relocate a reward after a single visit. Anim Cogn 15:631–637. doi:10.1007/s10071-012-0491-0

    Article  PubMed  Google Scholar 

  14. Gibson B, McGowan F (2014) Rats average entire vectors when navigating toward a hidden goal: a test of the vector sum model in rodents. Behav Processes 102:18–24. doi:10.1016/j.beproc.2013.12.009

    Article  PubMed  Google Scholar 

  15. Gibson BM, Shettleworth SJ (2003) Competition among spatial cues in a naturalistic food-carrying task. Anim Learn Behav 31:143–159. doi:10.3758/BF03195977

    Article  Google Scholar 

  16. Gibson BM, Wilks TJ, Kelly DM (2007) Rats (Rattus norvegicus) encode the shape of an array of discrete objects. J Comp Psychol 121:130–144. doi:10.1037/0735-7036.121.2.130

    Article  PubMed  Google Scholar 

  17. Gould KL, Kelly DM, Kamil AC (2010) What scatter-hoarding animals have taught us about small-scale navigation. Philos Trans R Soc Lond B Biol Sci 365:901–914. doi:10.1098/rstb.2009.0214

    PubMed Central  Article  PubMed  Google Scholar 

  18. Gould-Beierle KL, Kamil AC (1996) The use of local and global cues by Clark’s nutcrackers, Nucifraga columbiana. Anim Behav 52:519–528. doi:10.1006/anbe.1996.0194

    Article  Google Scholar 

  19. Gould-Beierle KL, Kamil AC (1999) The effect of proximity on landmark use in Clark’s nutcrackers. Anim Behav 58:477–488

    Article  PubMed  Google Scholar 

  20. Healy SD, Hurly TA (1998) Rufous hummingbirds’ (Selasphorus rufus) memory for flowers: patterns or actual spatial locations? J Exp Psychol Anim Behav Process 24:396–404

  21. Healy SD, Hurly TA (2003) Cognitive ecology: foraging in hummingbirds as a model system. Adv Study Behav 32:325–359

    Article  Google Scholar 

  22. Henderson J, Hurly TA, Healy SD (2006) Spatial relational learning in rufous hummingbirds (Selasphorus rufus). Anim Cogn 9:201–205. doi:10.1007/s10071-006-0021-z

    Article  PubMed  Google Scholar 

  23. Hurly TA, Healy SD (2002) Cue learning by rufous hummingbirds (Selasphorus rufus). J Exp Psychol Anim Behav Process 28:209–223. doi:10.1037//0097-7403.28.2.209

    Article  PubMed  Google Scholar 

  24. Hurly TA, Franz S, Healy SD (2010) Do rufous hummingbirds (Selasphorus rufus) use visual beacons? Anim Cogn 13:377–383. doi:10.1007/s10071-009-0280-6

    Article  PubMed  Google Scholar 

  25. Jones JE, Antoniadis E, Shettleworth SJ, Kamil AC (2002) A comparative study of geometric rule learning by nutcrackers (Nucifraga columbiana), pigeons (Columba livia) and jackdaws (Corvus monedula). J Comp Psychol 116:350–356. doi:10.1037//0735-7036.116.4.350

    Article  PubMed  Google Scholar 

  26. Kamil AC, Jones JE (2000) Geometric rule learning by Clark’s nutcrackers (Nucifraga columbiana). J Exp Psychol Anim Behav Process 26:439–453. doi:10.1037/0097-7403.26.4.439

    CAS  Article  PubMed  Google Scholar 

  27. Kelly DM (2010) Features enhance the encoding of geometry. Anim Cogn 13:453–462. doi:10.1007/s10071-009-0296-y

    Article  PubMed  Google Scholar 

  28. McGregor A, Good MA, Pearce JM (2004) Absence of an interaction between navigational strategies based on local and distal landmarks. J Exp Psychol Anim Behav Process 30:34–44. doi:10.1037/0097-7403.30.1.34

    Article  PubMed  Google Scholar 

  29. R Core Team (2014) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org/

  30. Roberts ADL, Pearce JM (1998) Control of spatial behaviour by an unstable landmark. J Exp Psychol Anim Behav Process 24:172–184

    Article  Google Scholar 

  31. Roberts ADL, Pearce JM (1999) Blocking in the Morris swimming pool. J Exp Psychol Anim Behav Process 25:225–235. doi:10.1037/0097-7403.25.2.225

    CAS  Article  PubMed  Google Scholar 

  32. Shettleworth S (2009) Cognition, evolution, and behavior. Oxford University Press, Oxford

    Google Scholar 

  33. Spetch ML (1995) Overshadowing in landmark learning: touch-screen studies with pigeons and humans. J Exp Psychol Anim Behav Process 21:166–181. doi:10.1037/0097-7403.21.2.166

    CAS  Article  PubMed  Google Scholar 

  34. Spetch ML, Wilkie DM (1994) Pigeons′ use of landmarks presented in digitized images. Learn Motiv 25:245–275. doi:10.1006/lmot.1994.1014

    Article  Google Scholar 

  35. Wagner AR, Logan FA, Haberlandt K, Price T (1968) Stimulus selection in animal discrimination learning. J Exp Psych 76(2):171–180. doi:10.1037/h0030023

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank Ken Cheng and two anonymous reviews for their comments, which greatly improved this manuscript. We also thank Maria Tello Ramos, Rachael Marshall, Caitlin Hamilton and Jamie Dunlop for their assistance over the field season. This work was supported by the University of St Andrews, the University of Lethbridge and the Natural Sciences and Engineering Council of Canada.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David J. Pritchard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pritchard, D.J., Hurly, T.A. & Healy, S.D. Effects of landmark distance and stability on accuracy of reward relocation. Anim Cogn 18, 1285–1297 (2015). https://doi.org/10.1007/s10071-015-0896-7

Download citation

Keywords

  • Navigation
  • Landmarks
  • Spatial memory
  • Spatial cognition
  • Orientation
  • Hummingbirds