Animal Cognition

, Volume 18, Issue 2, pp 533–542 | Cite as

The Ebbinghaus illusion in a fish (Xenotoca eiseni)

  • Valeria Anna SovranoEmail author
  • Liliana Albertazzi
  • Orsola Rosa Salva
Original Paper


The tendency of fish to perceive the Ebbinghaus illusion was investigated. Redtail splitfins (Xenotoca eiseni, family Goodeidae) were trained to discriminate between two disks of different sizes. Then, fish were presented with two disks of the same size surrounded by disks of large or small size (inducers) arranged to produce the impression (to a human observer) of two disks of different sizes (in the Ebbinghaus illusion, a central disk surrounded by small inducers appears bigger than an identical one surrounded by large inducers). Fish chose the stimulus that, on the basis of a perception of the Ebbinghaus illusion, appeared deceptively larger or smaller, consistent with the condition of training. These results demonstrate that redtail splitfins tend to perceive this particular illusion. The results are discussed with reference to other related illusions that have been recently observed to be experienced by fish (such as the Navon effect), and with regard to their possible evolutionary implications.


Visual perception Visual illusions Ebbinghaus illusion Titchener circles Fish 



This study was supported by research grant from the Cassa di Risparmio of Trento e Rovereto. We wish to thank Matteo Kettmaier for his help with the experiments and Francesco Cerri for the maintenance of the aquaria.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The experiments reported here comply with the current Italian and European Community laws for the ethical treatment of animals.


  1. Aglioti S, DeSouza JF, Goodale MA (1995) Size-contrast illusions deceive the eye but not the hand. Curr Biol 5:679–685PubMedCrossRefGoogle Scholar
  2. Agrillo C, Miletto Petrazzini ME, Dadda M (2014) Illusory patterns are fishy for fish, too. Front Neural Circuits 7:137Google Scholar
  3. Barbet I, Fagot J (2002) Perception of the corridor illusion by baboons (Papio papio). Behav Brain Res 132:111–115PubMedCrossRefGoogle Scholar
  4. Bayne K, Davis R (1983) Susceptibility of rhesus monkeys (Macaca mulatta) to the Ponzo illusion. Bull Psychon Soc 21:476–478CrossRefGoogle Scholar
  5. Cavoto KK, Cook RG (2001) Cognitive precedence for local information in hierarchical stimulus processing by pigeons. J Exp Psychol Anim Behav Proc 27(1):3–16CrossRefGoogle Scholar
  6. Cerella J (1980) The pigeon’s analysis of pictures. Pattern Recognit 12(1):1–6CrossRefGoogle Scholar
  7. Chiandetti C, Pecchia T, Patt F, Vallortigara G (2014) Visual hierarchical processing and lateralization of cognitive functions through domestic chicks’ eyes. PLoS One 9(1):e84435PubMedCentralPubMedCrossRefGoogle Scholar
  8. Choplin JM, Medin DL (1999) Similarity of the perimeters in the Ebbinghaus illusion. Percept Psychophys 61:3–12PubMedCrossRefGoogle Scholar
  9. Cook RG (1992) Dimensional organization and texture discrimination in pigeons. J Exp Psychol Anim Behav Proc 18:354–363CrossRefGoogle Scholar
  10. Cook RG, Cavoto KK, Cavoto BR (1996) Mechanisms of multidimensional grouping, fusion, and search. Anim Learn Behav 24:150–167CrossRefGoogle Scholar
  11. Coren S, Enns JT (1993) Size contrast as a function of conceptual similarity between test and inducers. Percept Psychophys 54:579–588PubMedCrossRefGoogle Scholar
  12. Danckert JA, Sharif N, Haffenden AM, Schiff KC, Goodale MA (2002) A temporal analysis of grasping in the Ebbinghaus illusion: planning versus online control. Exp Brain Res 144:275–280PubMedCrossRefGoogle Scholar
  13. Darmaillacq AS, Dickel L, Rahmani N, Shashar N (2011) Do reef fish, Variola louti and Scarus niger, perform amodal completion? Evidence from a field study. J Comp Psychol 125:273PubMedCrossRefGoogle Scholar
  14. De Fockert J, Davidoff J, Fagot J, Parron C, Goldstein J (2007) More accurate size contrast judgments in the Ebbinghaus illusion by a remote culture. J Exp Psychol Hum Percept Perform 3:738–742CrossRefGoogle Scholar
  15. De Grave DDJ, Biegstraaten M, Smeets JBJ, Brenner E (2005) Effects of the Ebbinghaus figure on grasping are not only due to misjudged size. Exp Brain Res 163:58–64PubMedCrossRefGoogle Scholar
  16. Deruelle C, Fagot J (1998) Visual search for global/local stimulus features in humans and baboons. Psychon Bull Rev 5:476–481CrossRefGoogle Scholar
  17. Ebbinghaus H (1902) Grundzüge der psychologie. Veit, LeipzigGoogle Scholar
  18. Fagot J, Deruelle C (1997) Processing of global and local visual information and hemispheric specialization in humans (Homo sapiens) and baboons (Papio papio). J Exp Psychol Hum Percept Perform 23:429–442PubMedCrossRefGoogle Scholar
  19. Forkman B, Vallortigara G (1999) Minimization of modal contours: an essential cross species strategy in disambiguating relative depth. Anim Cogn 4:181–185CrossRefGoogle Scholar
  20. Fremouw T, Herbranson WT, Shimp CP (1998) Priming of attention to local and global levels of visual analysis. J Exp Psychol Anim Behav Proc 24:278–290CrossRefGoogle Scholar
  21. Fremouw T, Herbranson WT, Shimp CP (2002) Dynamic shifts of pigeon local/global attention. Anim Cogn 5:233–243PubMedCrossRefGoogle Scholar
  22. Fujita K (1996) Linear perspective and the Ponzo illusion: a comparison between rhesus monkeys and humans. Jpn Psychol Res 38:136–145CrossRefGoogle Scholar
  23. Fujita K (1997) Perception of the Ponzo illusion by rhesus monkeys, chimpanzees, and humans: similarity and difference in the three primate species. Percept Psychophys 59:284–292PubMedCrossRefGoogle Scholar
  24. Fujita K, Blough DS, Blough PM (1991) Pigeons see the Ponzo illusion. Anim Learn Behav 19:283–293CrossRefGoogle Scholar
  25. Fujita K, Blough DS, Blough PM (1993) Effects of the inclination of context lines on perception of the Ponzo illusion by pigeons. Anim Learn Behav 21:29–34CrossRefGoogle Scholar
  26. Fuss T, Bleckmann H, Schluessel V (2014) The brain creates illusions not just for us: sharks (Chiloscyllium griseum) can “see the magic” as well. Front Neural Circuits 20:8–24Google Scholar
  27. Geiger G, Poggio T (1975) The Müller-Lyer figure and the fly. Science 190:479–480PubMedCrossRefGoogle Scholar
  28. Girgus JS, Coren S, Agdern M (1972) The interrelationship between the Ebbinghaus and Delboeuf illusions. J Exp Psychol 95:453–455PubMedCrossRefGoogle Scholar
  29. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25PubMedCrossRefGoogle Scholar
  30. Happé F (1996) Studying weak central coherence at low levels: children with autism do not succumb to visual illusions. A research note. J Child Psychol Psychiatry 37:873–877PubMedCrossRefGoogle Scholar
  31. Horridge GA, Zang S-W, O’Carrol D (1992) Insect perception of illusory contours. Philos Trans R Soc Lond B 337:59–64CrossRefGoogle Scholar
  32. Kaldy Z, Kovacs I (2003) Visual context integration is not fully developed in 4-year-old children. Perception 32:657–666PubMedCrossRefGoogle Scholar
  33. Kimchi R (1992) Primacy of wholistic processing and global/local paradigm: a critical review. Psychol Bull 112:24–38PubMedCrossRefGoogle Scholar
  34. Kinchla RA, Wolf JM (1979) The order of visual processing: top-down, bottom-up, or middle-out. Percept Psychophys 25:225–231PubMedCrossRefGoogle Scholar
  35. Kinchla RA, Solis-Macias V, Hoffman J (1983) Attending to different levels of structure in a visual image. Percept Psychophys 33:1–10PubMedCrossRefGoogle Scholar
  36. Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920PubMedCrossRefGoogle Scholar
  37. Mascalzoni E, Regolin L (2011) Animal visual perception. Wiley Interdiscip Rev Cogn Sci 2:106–116CrossRefGoogle Scholar
  38. Massaro DW, Anderson NH (1971) Judgemental model of the Ebbinghaus illusion. J Exp Psychol 89:147–151PubMedCrossRefGoogle Scholar
  39. Murayama T, Usui A, Takeda E, Kato K, Maejima K (2012) Relative size discrimination and perception of the Ebbinghaus illusion in a bottlenose dolphin (Tursiops truncatus). Aquat Mamm 38:333–342CrossRefGoogle Scholar
  40. Nakamura N, Fujita K, Ushitani T, Miyata H (2006) Perception of the standard and the reversed Müller-Lyer figures in pigeons (Columba livia) and humans (Homo sapiens). J Comp Psychol 120:252–261PubMedCrossRefGoogle Scholar
  41. Nakamura N, Watanabe S, Fujita K (2008) Pigeons perceive the Ebbinghaus–Titchener circles as an assimilation illusion. J Exp Psychol Anim Behav Proc 34(3):375–387CrossRefGoogle Scholar
  42. Nakamura N, Watanabe S, Fujita K (2009) Further analysis of perception of reversed Müller-Lyer figures for pigeons (Columba livia). Percept Mot Skills 108:239–250PubMedCrossRefGoogle Scholar
  43. Nakamura N, Watanabe S, Fujita K (2014) A reversed Ebbinghaus–Titchener illusion in bantams (Gallus gallus domesticus). Anim Cogn 17:471–481PubMedCrossRefGoogle Scholar
  44. Navon D (1977) Forest before trees: precedence of global features in visual perception. Cogn Psychol 9:353–383CrossRefGoogle Scholar
  45. Oyama T (1960) Japanese studies on the so-called geometrical-optical illusions. Psychologia 3:7–20Google Scholar
  46. Parron C, Fagot J (2007) Comparison of grouping abilities in humans (Homo sapiens) and baboons (Papio papio) with Ebbinghaus illusion. J Comp Psychol 121:405–411PubMedCrossRefGoogle Scholar
  47. Pepperberg IM, Vicinay J, Cavanagh P (2008) Processing of the Müller-Lyer illusion by a grey parrot (Psittacus erithacus). Perception 37:765–781PubMedCrossRefGoogle Scholar
  48. Phillips WA, Chapman KL, Berry PD (2004) Size perception is less context sensitive in males. Perception 33:79–86PubMedCrossRefGoogle Scholar
  49. Pomerantz JR (1983) Global and local precedence: selective attention in form and motion perception. J Exp Psychol Gen 112:516–540PubMedCrossRefGoogle Scholar
  50. Regolin L, Vallortigara G (1995) Perception of partly occluded objects by young chicks. Percept Psychophys 57:971–976PubMedCrossRefGoogle Scholar
  51. Regolin L, Marconato F, Vallortigara G (2004) Hemispheric differences in the recognition of partly occluded objects by newly-hatched domestic chicks (Gallus gallus). Anim Cogn 7:162–170PubMedCrossRefGoogle Scholar
  52. Reiner A, Yamamoto K, Karten HJ (2005) Organization and evolution of the avian forebrain. Anat Rec A Discov Mol Cell Evol Biol 287A:1080–1120CrossRefGoogle Scholar
  53. Roberts B, Harris MG, Yates TA (2005) The roles of inducer size and distance in the Ebbinghaus illusion (Titchener circle). Perception 34:847–856PubMedCrossRefGoogle Scholar
  54. Robertson LC, Egly R, Lamb MR, Kerth L (1993) Spatial attention and cuing to global and local levels of hierarchical structure. J Exp Psychol Hum Percept Perform 19:471–487PubMedCrossRefGoogle Scholar
  55. Rosa Salva O, Rugani R, Cavazzana A, Regolin L, Vallortigra G (2013) Perception of the Ebbinghaus illusion in four-day-old domestic chicks (Gallus gallus). Anim Cogn 16:895–906PubMedCrossRefGoogle Scholar
  56. Rosa Salva O, Sovrano VA, Vallortigara G (2014) What can fish brains tell us about visual perception. Front Neural Circuits 8:119. doi: 10.3389/fncir.2014.00119 PubMedCentralPubMedCrossRefGoogle Scholar
  57. Shimizu T (2004) Comparative cognition and neuroscience: misconceptions about brain evolution. Jpn Psychol Res 46:246–254CrossRefGoogle Scholar
  58. Shimizu T, Bowers AN (1999) Visual circuits of the avian telencephalon: evolutionary implications. Behav Brain Res 98:183–191PubMedCrossRefGoogle Scholar
  59. Sovrano VA, Bisazza A (2008) Recognition of partly occluded objects by fish. Anim Cogn 11:161–166PubMedCrossRefGoogle Scholar
  60. Sovrano VA, Bisazza A (2009) Perception of subjective contours in fish. Perception 38:579–590PubMedCrossRefGoogle Scholar
  61. Steinke D, Salzburger W, Meyer A (2006) Novel relationships among ten fish model species revealed based on a phylogenomic analysis using ESTs. J Mol Evol 62:772–784PubMedCrossRefGoogle Scholar
  62. Suganuma E, Pessoa VF, Monge-Fuentes V, Castro BM, Tavares MCH (2007) Perception of the Müller-Lyer illusion in capuchin monkeys (Cebus apella). Behav Brain Res 182:67–72PubMedCrossRefGoogle Scholar
  63. Sutherland NS, Mackintosh NJ (1971) Mechanisms of animal discrimination learning. Academic Press, LondonGoogle Scholar
  64. Timney B, Keil K (1996) Horses are sensitive to pictorial depth cues. Perception 25:1121–1128PubMedCrossRefGoogle Scholar
  65. Truppa V, Sovrano VA, Spinozzi G, Bisazza A (2010) Processing of visual hierarchical stimuli by fish (Xenoteca eiseni). Behav Brain Res 207(1):51–60PubMedCrossRefGoogle Scholar
  66. Tudusciuc O, Nieder A (2010) Comparison of length judgments and the Müller-Lyer illusion in monkeys and humans. Exp Brain Res 207:221–231PubMedCrossRefGoogle Scholar
  67. Ushitani T, Fujita K, Yamanaka R (2001) Do pigeons (Columba livia) perceive object unity? Anim Cogn 4:153–161PubMedCrossRefGoogle Scholar
  68. Vallortigara G (2004) Visual cognition and representation in birds and primates. In: Rogers LJ, Kaplan G (eds) Vertebrate comparative cognition: are primates superior to non-primates?. Kluwer Academic/Plenum Publishers, New York, pp 57–94CrossRefGoogle Scholar
  69. Vallortigara G (2006) The cognitive chicken: visual and spatial cognition in a non-mammalian brain. In: Wasserman EA, Zentall TR (eds) Comparative cognition: experimental explorations of animal intelligence. Oxford University Press, Oxford, pp 41–58Google Scholar
  70. Vallortigara G (2009) Original knowledge and the two cultures. In: Carafoli E, Danieli GA, Longo GO (eds) The two cultures: shared problems. Springer, Berlin, pp 125–145CrossRefGoogle Scholar
  71. Vallortigara G (2012) Core knowledge of object, number, and geometry: a comparative and neural approach. Cogn Neuropsychol 29:213–236PubMedCrossRefGoogle Scholar
  72. Vallortigara G, Chiandetti C, Rugani R, Sovrano VA, Regolin L (2010) Animal cognition. Wiley Interdiscip Rev Cogn Sci 1:882–893CrossRefGoogle Scholar
  73. Wade NJ (2005) Perception and illusions, historical perspectives. Springer, DordrechtGoogle Scholar
  74. Wade NJ (2010) Visual illusions. Corsini encyclopedia of psychology. Wiley, Hoboken, pp 1–2Google Scholar
  75. Warden CJ, Baar J (1929) The Müller-Lyer illusion in the ring dove, Turtur risorius. J Comp Psychol 9(4):275–292CrossRefGoogle Scholar
  76. Wasserman EA, Kirkpatrick-Steger K, Van Hamme LJ, Biederman I (1993) Pigeons are sensitive to the spatial organization of complex visual stimuli. Psychol Sci 4:336–341CrossRefGoogle Scholar
  77. Weintraub DJ (1979) Ebbinghaus illusion: context, contour, and age influence the judged size of a circle admist circles. J Exp Psychol Hum Percept Perform 5:353–364PubMedCrossRefGoogle Scholar
  78. Winslow CN (1933) Visual illusions in the chick. Arch Physiol 153:1–83Google Scholar
  79. Wyzisk K (2005) Experimente zur Form- und Größenwahrnehmung beim Goldfisch (Carassius auratus) unter Verwendung von Scheinkonturen und Größentäuschungen. Ph.D. thesis, Johannes-Gutenberg-Universität Mainz, GermanyGoogle Scholar
  80. Wyzisk K, Neumeyer C (2007) Perception of illusory surfaces and contours in goldfish. Vis Neurosci 24:291–298PubMedCrossRefGoogle Scholar
  81. Yamazaki Y, Otsuka Y, Kanazawa S, Yamaguchi MK (2010) Perception of the Ebbinghaus illusion in 5-to-8-month-old infants. Jpn Psychol Res 52(1):33–40CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Valeria Anna Sovrano
    • 1
    • 2
    Email author
  • Liliana Albertazzi
    • 1
    • 3
  • Orsola Rosa Salva
    • 1
  1. 1.Center for Mind/Brain Sciences (CIMeC)University of TrentoRovereto, TrentoItaly
  2. 2.Department of Psychology and Cognitive SciencesUniversity of TrentoTrentoItaly
  3. 3.Department of HumanitiesUniversity of TrentoTrentoItaly

Personalised recommendations