Skip to main content

Surface texture and priming play important roles in predator recognition by the red-backed shrike in field experiments

Abstract

We compared the responses of the nesting red-backed shrikes (Lanius collurio) to three dummies of a common nest predator, the Eurasian jay (Garrulus glandarius), each made from a different material (stuffed, plush, and silicone). The shrikes performed defensive behaviour including attacks on all three dummies. Nevertheless, the number of attacks significantly decreased from the stuffed dummy through the plush dummy and finally to the silicone dummy. Our results show that wild birds use not only colours but also other surface features as important cues for recognition and categorization of other bird species. Moreover, the silicone dummy was attacked only when presented after the stuffed or plush dummy. Thus, we concluded that the shrikes recognized the jay only the stuffed (with feathered surface) and plush (with hairy surface) dummies during the first encounter. Recognition of the silicon dummy (with glossy surface) was facilitated by previous encounters with the more accurate model. This process resembles the effect of perceptual priming, which is widely described in the literature on humans.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Arroyo B, Mougeot F, Bretagnolle V (2001) Colonial breeding and nest defence in Montagu’s harrier (Circus pygargus). Behav Ecol Sociobiol 50:109–115. doi:10.1007/s002650100342

    Article  Google Scholar 

  2. Aust U, Huber L (2002) Target-defining features in a “people-present/people-absent” discrimination task by pigeons. Anim Learn Behav 30:165–176. doi:10.3758/BF03192918

    PubMed  Article  Google Scholar 

  3. Aust U, Huber L (2006) Picture-object recognition in pigeons: evidence of representational insight in a visual categorization task using a complementary information procedure. J Exp Psychol Anim B 32:190–195. doi:10.1037/0097-7403.32.2.190

    Article  Google Scholar 

  4. Aust U, Huber L (2010) The role of skin-related information in pigeons’ categorization and recognition of humans in pictures. Vision Res 50:1941–1948. doi:10.1016/j.visres.2010.07.012

    PubMed  Article  Google Scholar 

  5. Basile BM, Hampton RR (2013) Monkeys show recognition without priming in a classification task. Behav Process 93:50–61. doi:10.1016/j.beproc.2012.08.005

    Article  Google Scholar 

  6. Blough PM (1989) Attentional priming and visual search in pigeons. J Exp Psychol Anim B 15:358–365. doi:10.1037/0097-7403.15.4.358

    CAS  Article  Google Scholar 

  7. Blough PM (1991) Selective attention and search images in pigeons. J Exp Psychol Anim B 17:292–298. doi:10.1037/0097-7403.17.3.292

    CAS  Article  Google Scholar 

  8. Blough PM (1992) Detectability and choice during visual search: joint effects of sequential priming and discriminability. Anim Learn Behav 20:293–300. doi:10.3758/BF03213383

    Article  Google Scholar 

  9. Blumstein DT (2006) The multipredator hypothesis and the evolutionary persistence of antipredator behaviour. Ethology 112:209–217

    Article  Google Scholar 

  10. Bovet D, Vauclair J (2000) Picture recognition in animals and humans. Behav Brain Res 109:143–165. doi:10.1016/S0166-4328(00)00146-7

    CAS  PubMed  Article  Google Scholar 

  11. Brodbeck DR (1997) Picture fragment completion: priming in the pigeon. J Exp Psychol Anim B 23:461–468

    CAS  Article  Google Scholar 

  12. Brown GE, Ferrari MCO, Malka PH, Russo S, Tressider M, Chivers DP (2011) Generalization of predators and non-predators by juvenile rainbow trout: learning what is and what is not a threat. Anim Behav 81:1249–1256

    Article  Google Scholar 

  13. Buitron D (1983) Variability in the responses of black-billed magpies to natural predators. Behaviour 87:209–236

    Article  Google Scholar 

  14. Caro TM (2005) Antipredator defenses in birds and mammals. University of Chicago Press, Chicago

    Google Scholar 

  15. Clemmons JR, Lambrechts MM (1992) The waving display and other nest site antipredatory behaviour of the black-capped chickadee. Wilson Bull 104:749–756

    Google Scholar 

  16. Cook RG (1992a) Dimensional organization and texture discrimination in pigeons. J Exp Psychol-Anim Behav Proc 18:354–363

    CAS  Article  Google Scholar 

  17. Cook RG (1992b) Acquisition and transfer of visual texture discriminations in pigeons. J Exp Psychol-Anim Behav Proc 18:341–353

    Article  Google Scholar 

  18. Cook RG (1993) The experimental analysis of cognition in animals. Psychol Sci 4:174–178

    Article  Google Scholar 

  19. Cook RG, Cavoto KK, Cavoto BR (1995) Same-different texture discrimination and concept learning by pigeons. J Exp Psychol-Anim Behav Proc 21:253–260

    Article  Google Scholar 

  20. Cook RG, Cavoto KK, Cavoto BR (1996) Mechanisms of multidimensional grouping, fusion and search in avian texture discrimination. Anim Learn Behav 24:150–167

    Article  Google Scholar 

  21. Cook RG, Cavoto BR, Katz JS, Cavoto KK (1997) Pigeon perception and discrimination of rapidly changing texture stimuli. J Exp Psychol-Anim Behav Proc 23:390–400

    CAS  Article  Google Scholar 

  22. Curio E, Klump G, Regelmann K (1983) An anti-predator response in the great tit (Parus major)—is it tuned to predator risk. Oecologia 60:83–88

    Article  Google Scholar 

  23. Deppe C, Holt D, Tewksbury J, Broberg L, Petersen J, Wood K (2003) Effect of Northern Pygmy-Owl (Glaucidium gnoma) eyespots on avian mobbing. Auk 120:765–771

    Article  Google Scholar 

  24. Dittrich W, Gilbert F, Green P, McGregor P, Grewcock D (1993) Imperfect Mimicry—a Pigeons Perspective. P Roy Soc Lond B Bio 251:195–200

    Article  Google Scholar 

  25. Dukas R (1998) Cognitive ecology: the evolutionary ecology of information processing and decision making. University of Chicago Press, Chicago

    Google Scholar 

  26. Dukas R, Kamil AC (2001) Limited attention: the constraint underlying search image. Behav Ecol 12:192–199. doi:10.1093/beheco/12.2.192

    Article  Google Scholar 

  27. Edmunds M (1974) Defence in animals: a survey of anti-predator defences. Longman, New York

    Google Scholar 

  28. Ferrari MCO, Gonzalo A, Messier F, Chivers DP (2007) Generalization of learned predator recognition: an experimental test and framework for future studies. Proc Roy Soc B 274:1853–1859. doi:10.1098/rspb.2007.0297

    Article  Google Scholar 

  29. Ferrari MCO, Brown GE, Messier F, Chivers DP (2009) Threat-sensitive generalization of predator recognition by larval amphibians. Behav Ecol Sociobiol 63:1369–1375. doi:10.1007/s00265-009-0779-5

    Article  Google Scholar 

  30. Friedman A, Spetch ML, Lank I (2003) An automated apparatus for presenting depth-rotated three-dimensional objects in human and animal object recognition research. Behav Res Meth Ins C 35:343–349. doi:10.3758/BF03202563

    Article  Google Scholar 

  31. Griffin AS, Evans CS, Blumstein DT (2001) Learning specificity in acquired predator recognition. Anim Behav 62:577–589. doi:10.1006/anbe.2001.1781

    Article  Google Scholar 

  32. Hart NS, Partridge JC, Cuthill IC, Bennett ATD (2000) Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus) and the blackbird (Turdus merula). J Comp Physiol A 186:375–387

    CAS  PubMed  Article  Google Scholar 

  33. Hartley P (1950) An experimental analysis of interspecific recognition. Symp Soc Exp Biol 4:313–336

    Google Scholar 

  34. Jacobsen OW, Ugelvik M (1992) Antipredator behaviour of breeding Eurasian wigeon. J Field Ornit 63:324–330

    Google Scholar 

  35. Jitsumori M, Delius JD (2001) Object recognition and object categorization in animals. In: Matsuzawa T (ed) Primate origins of human cognition and behavior. Springer, Tokyo, pp 269–293

    Google Scholar 

  36. Katz JS, Cook RG (2000) Stimulus repetition effects on texture-based visual search by pigeon. J Exp Psychol Anim Behav Process 26:220–236

    CAS  PubMed  Article  Google Scholar 

  37. Kelly DM, Cook RG (2003) Differential effects of visual context on pattern discrimination by pigeons (Columba livia) and humans (Homo sapiens). J Comp Psychol 117:200–208

    PubMed  Article  Google Scholar 

  38. Kleindorfer S, Fessl B, Hoi H (2005) Avian nest defence behaviour: assessment in relation to predator distance and type, and nest height. Anim Behav 69:307–313

    Article  Google Scholar 

  39. Knight R, Temple S (1988) Nest-defense behavior in the red-winged blackbird. Condor 90:193–200

    Article  Google Scholar 

  40. Krätzig H (1940) Untersuchungen zur Lebensweise des Moorschneehuhns, Lagopus l. Lagopus, während der Jugendentwicklung. Jour für Ornith 88:139–166

  41. Kullberg C, Lind J (2002) An experimental study of predator recognition in great tit fledglings. Ethology 108:429–441

    Article  Google Scholar 

  42. Lack D (1965) The life of the robin. Collins, London

    Google Scholar 

  43. Langley CM, Riley DA, Bond AB, Goel N (1996) Visual search for natural grains in pigeons (Columba livia): search images and selective attention. J Exp Psychol Anim Behav 22:139–151. doi:10.1037/0097-7403.22.2.139

    CAS  PubMed  Article  Google Scholar 

  44. Lombardi CM, Curio E (1985) Social facilitation of mobbing in the zebra finch Taeniopygia guttata. Bird Behav 6:34–40

    Article  Google Scholar 

  45. Lorenz K (1940) Vergleichende Verhaltensforschung. Verh deutsch Zool Gesellsch 1939: 69–102

  46. Maia R, Eliason CM, Bitton PP, Doucet SM, Shawkey MD (2013) pavo: an R Package for the analysis, visualization and organization of spectral data. Methods Ecol Evol 4:906–913. doi:10.1111/2041-210X.12069

    Google Scholar 

  47. Němec M, Fuchs R (2014) Nest defense of the red-backed shrike Lanius collurio against five corvid species. Acta Ethol 1–6. doi:10.1007/s10211-013-0175-z

  48. Nicholls E, Ryan CME, Bryant CML, Lea SEG (2011) Labeling and family resemblance in the discrimination of polymorphous categories by pigeons. Anim Cogn 14:21–34. doi:10.1007/s10071-010-0339-4

    PubMed  Article  Google Scholar 

  49. Patterson TL, Petrinovich L, James DK (1980) Reproductive value and appropriateness of response to predators by white-crowned sparrows. Behav Ecol Sociobiol 7:227–231

    Article  Google Scholar 

  50. Pinheiro J, Bates D, DebRoy S et al (2012) nlme: linear and nonlinear mixed effects models. R package version 3.1-103

  51. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  52. Rytkönen S, Soppela M (1995) Vicinity of sparrowhawk nest affects willow tit nest defense. Condor 97:1074–1078

    Article  Google Scholar 

  53. Shettleworth SJ (1993) Where is the comparison in comparative cognition? Alternative research programs. Psychol Sci 4:179–184. doi:10.1111/j.1467-9280.1993.tb00484.x

    Article  Google Scholar 

  54. Shettleworth SJ (2010) Cognition, evolution, and behavior, 2nd edn. Oxford University Press, New York

    Google Scholar 

  55. Siddiqi A, Cronin TW, Loew ER, Vorobyev M, Summers K (2004) Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumillo. J Exp Biol 207:2471–2485

    PubMed  Article  Google Scholar 

  56. Spetch ML, Friedman A (2006) Comparative cognition of object recognition. Comp Cogn Behav Rev 1:12–35

  57. Stankowich T, Coss RG (2007) The re-emergence of felid camouflage with the decay of predator recognition in deer under relaxed selection. Proc Roy Soc B 274:175–182. doi:10.1098/rspb.2006.3716

    Article  Google Scholar 

  58. Strnad M, Němec M, Veselý P, Fuchs R (2012) Red-backed Shrikes (Lanius collurio) adjust the mobbing intensity, but not mobbing frequency, by assessing the potential threat to themselves from different predators. Ornis Fennica 89:206–215

    Google Scholar 

  59. Tinbergen N (1948) Social releasers and the experimental method required for their study. Wilson Bull 60:6–51

    Google Scholar 

  60. Troje NF, Huber L, Loidolt M et al (1999) Categorical learning in pigeons: the role of texture and shape in complex static stimuli. Vision Res 39:353–366. doi:10.1016/S0042-6989(98)00153-9

    CAS  PubMed  Article  Google Scholar 

  61. Tryjanowski P, Goławski A (2004) Sex differences in nest defence by the red-backed shrike Lanius collurio : effects of offspring age, brood size, and stage of breeding season. J Ethol 22:13–16. doi:10.1007/s10164-003-0096-9

    Article  Google Scholar 

  62. Tryjanowski P, Karg K, Karg J (2003) Assessing Red-backed Shrike Lanius collurio diet: a comparison of collar, pellet and prey remain methods of analysis. Acta Ornithol 38:59–64

    Article  Google Scholar 

  63. Tulving E, Schacter DL (1990) Priming and human memory systems. Science 247:301–306. doi:10.1126/science.2296719

    CAS  PubMed  Article  Google Scholar 

  64. Tvardíková K, Fuchs R (2010) Tits use amodal completion in predator recognition: a field experiment. Anim Cogn 13:609–615. doi:10.1007/s10071-010-0311-3

    PubMed  Article  Google Scholar 

  65. Tvardíková K, Fuchs R (2011) Do birds behave according to dynamic risk assessment theory? A feeder experiment. Behav Ecol Sociobiol 65:727–733. doi:10.1007/s00265-010-1075-0

    Article  Google Scholar 

  66. Tvardíková K, Fuchs R (2012) Tits recognize the potential dangers of predators and harmless birds in feeder experiments. J Ethol 30:157–165. doi:10.1007/s10164-011-0310-0

    Article  Google Scholar 

  67. Vorobyev M, Osorio D (1998) Receptor noise as a determinant of colour thresholds. Proc Roy Soc Lon B 265:351–358

    CAS  Article  Google Scholar 

  68. Vorobyev M, Osorio D, Bennett ATD, Marshall NJ, Cuthill C (1998) Tetrachromacy, oil droplets and bird plumage colours. J Comp Physiol A 183:621–633

    CAS  PubMed  Article  Google Scholar 

  69. Wasserman EA, Zentall TR (2009) Comparative cognition: experimental explorations of animal intelligence. Oxford University Press, New York

    Book  Google Scholar 

  70. Webb JK, Pike DA, Shine R (2010) Olfactory recognition of predators by nocturnal lizards: safety outweighs thermal benefits. Behav Ecol 21:72–77

    Article  Google Scholar 

  71. Weidinger K, Kocvara R (2010) Repeatability of nest predation in passerines depends on predator species and time scale. Oikos 119:138–146. doi:10.1111/j.1600-0706.2009.17649.x

    Article  Google Scholar 

  72. Young ME, Peissig JJ, Wasserman EA, Biederman I (2001) Discrimination of geons by pigeons: the effects of variations in surface depiction. Anim Learn Behav 29:97–106. doi:10.3758/BF03192819

    Article  Google Scholar 

  73. Zentall TR, Wasserman EA, Lazareva OF, Thompson RKR, Rattermann MJ (2008) Concept learning in animals. Comp Cogn Behav Rev. doi:10.3819/ccbr.2008.30002

    Google Scholar 

Download references

Acknowledgments

We would like to thank the Academy of Sciences of the Czech Republic (IAA601410803), the Czech Science Foundation (206/08/H044), and the Grant Agency of the University of South Bohemia (04-142/2010/P and 144/2010/100) for their financial support. We also thank the Hradiště Military Regional Office for allowing us to conduct experiments within their training area. Special thanks also to Martin Strnad for help in the field, Petr Kos and Corey Stringer from North Carolina, USA, for a linguistic revision of the manuscript, and to Simona Poláková for consultations.

Conflict of interest

The authors declare they have no conflict of interest.

Ethical standard

All experiments were conducted in accordance with the valid laws and regulations of the Czech Republic and in compliance with the Ethic Committee of the Faculty of Science, University of South Bohemia. Behavioural experiments on the wild birds were enabled by the certificate no. 13842/2011-30 offered by the Ministry of the Environment of the Czech Republic and licence for experimenting with birds (Czech animal welfare commission, licence no. ČZU 486/01).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michaela Syrová.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Němec, M., Syrová, M., Dokoupilová, L. et al. Surface texture and priming play important roles in predator recognition by the red-backed shrike in field experiments. Anim Cogn 18, 259–268 (2015). https://doi.org/10.1007/s10071-014-0796-2

Download citation

Keywords

  • Anti-predator behaviour
  • Artificial dummies
  • Surface texture
  • Categorization
  • Recognition
  • Priming