Advertisement

Animal Cognition

, Volume 18, Issue 1, pp 119–130 | Cite as

Do tufted capuchin monkeys play the odds? Flexible risk preferences in Sapajus spp.

  • Francesca De Petrillo
  • Marialba Ventricelli
  • Giorgia Ponsi
  • Elsa Addessi
Original Paper

Abstract

As humans, several non-human animal species avoid risk, defined as “variability in rate of gain”. However, non-human primate studies revealed a more complicated picture, with different species ranging from risk aversion to risk proneness. Within an ecological rationality framework, a species’ feeding ecology should influence its risk preferences, as it has been shown in bonobos and chimpanzees. Although the feeding ecology hypothesis is promising, it has not been yet verified in species other than apes. Here, we aimed to assess whether this hypothesis holds true in tufted capuchin monkeys (Sapajus spp.). Ten capuchins were presented with choices between a “safe” option and a “risky” option in three conditions differing for the probability of receiving the larger reward when selecting the risky option. Similarly to chimpanzees, capuchins were risk prone. However, capuchins’ behaviour was not the result of a bias towards the choice of the risky option, since—when facing options with different probabilities of obtaining the larger outcome—they were able to flexibly modify their preferences. Capuchins’ decision-making under risk mirrors their risk-prone behaviour in the wild, where they often rely on unpredictable and/or hazardous food sources, thus satisfying the feeding ecology hypothesis.

Keywords

Decision-making Risk Capuchin monkeys Non-human primates 

Notes

Acknowledgments

We thank Maria Bobbio and Luca Marino for help with data collection. We especially thank Fabio Paglieri, Gabriele Schino, and Elisabetta Visalberghi for constructive discussions and valuable comments and Dan Ariely for his fundamental support. We also thank Roma Capitale-Museo Civico di Zoologia and the Fondazione Bioparco for hosting the ISTC-CNR Unit of Cognitive Primatology and Primate Centre, and Massimiliano Bianchi and Simone Catarinacci for assistance with capuchins. This study was funded by the PNR-CNR Aging Program 2012–2014.

Supplementary material

Supplementary material Movie 1. Experiment 1, Neutral condition. Robin hood, a male capuchin, is presented with the choice between a “safe” option (four food items covered by the white bowl, on the experimenter’s left) and a “risky” option (in this case, one food item covered by the red bowl, on the experimenter’s right). He chooses the “safe” option by inserting his finger in the hole of the corresponding transparent box and the experimenter provides him with the food. (MPG 56796 kb)

References

  1. Addessi E (2008) Food variety-seeking in capuchin monkeys. Physiol Behav 93:304–309PubMedCrossRefGoogle Scholar
  2. Addessi E, Rossi S (2011) Tokens improve capuchin performance in the reverse–reward contingency task. Proc R Soc B 278:849–854PubMedCentralPubMedCrossRefGoogle Scholar
  3. Addessi E, Crescimbene L, Visalberghi E (2007) Do capuchin monkeys (Cebus apella) use tokens as symbols? Proc R Soc B 247:2579–2585CrossRefGoogle Scholar
  4. Addessi E, Crescimbene L, Visalberghi E (2008) Food and token quantity discrimination in capuchin monkeys (Cebus apella). Anim Cogn 11:275–282PubMedCrossRefGoogle Scholar
  5. Addessi E, Mancini A, Crescimbene L, Ariely D, Visalberghi E (2010) How to spend a token? Trade-offs between food variety and food preference in tufted capuchin monkeys (Cebus apella). Behav Process 83:267–275CrossRefGoogle Scholar
  6. Addessi E, Paglieri F, Focaroli V (2011) The ecological rationality of delay tolerance: insights from capuchin monkeys. Cognition 119:142–147PubMedCrossRefGoogle Scholar
  7. Addessi E, Bellagamba F, Delfino A, De Petrillo F, Focaroli V, Macchitella L, Maggiorelli V, Pace B, Pecora G, Rossi S, Sbaffi A, Tasselli MI, Paglieri F (2014) Waiting by mistake: symbolic representation of rewards modulate intertemporal choice in capuchin monkeys (Cebus apella), preschool children and adult humans. Cognition 130:428–441PubMedCrossRefGoogle Scholar
  8. ASAB/ABS (2014) Guidelines for the treatment of animals in behavioural research and teaching. Anim Behav 87:I–IXGoogle Scholar
  9. Barraclough DJ, Conroy ML, Lee D (2004) Prefrontal cortex and decision making in a mixed-strategy game. Nat Neurosci 7:404–410PubMedCrossRefGoogle Scholar
  10. Bastiani L, Gori M, Colasante E, Siciliano V, Capitanucci D, Jarre P, Molinaro S (2013) Complex factors and behaviors in the gambling population of Italy. J Gambl Stud 29:1–13PubMedCrossRefGoogle Scholar
  11. Caraco T (1981) Energy budgets, risk and foraging preferences in dark-eyed juncos (Junco hyemalis). Behav Ecol Sociobiol 8:213–217CrossRefGoogle Scholar
  12. Chen MK, Lakshminaryanan V, Santos LR (2006) The evolution of our preferences: evidence from capuchin monkey trading behavior. J Polit Econ 114:517–537CrossRefGoogle Scholar
  13. Estle SJ, Green L, Myerson J, Holt DD (2007) Discounting of monetary and directly consumable rewards. Psychol Sci 18:58–63PubMedCrossRefGoogle Scholar
  14. Evans TA, Beran MJ, Harris EH, Rice DF (2009) Quantity judgments of sequentially presented food items by capuchin monkeys (Cebus apella). Anim Cogn 12:97–105PubMedCrossRefGoogle Scholar
  15. Fragaszy DM, Visalberghi E, Fedigan LM (2004) The complete capuchin: the biology of genus Cebus. Cambridge University Press, CambridgeGoogle Scholar
  16. Gigerenzer G, Todd PM (1999) Simple heuristics that make us smart. Oxford University Press, OxfordGoogle Scholar
  17. Gilby IC, Wrangham RW (2007) Risk-prone hunting by chimpanzees (Pan troglodytes schweinfurthii) increases during periods of high diet quality. Behav Ecol Sociobiol 61:1771–1779CrossRefGoogle Scholar
  18. Goldstein SJ, Richard AF (1989) Ecology of rhesus macaques (Macaca mulatta) in Northwest Pakistan. Int J Primatol 10:531–567CrossRefGoogle Scholar
  19. Green L, Myerson J (2009) Experimental and correlational analyses of delay and probability discounting. In: Madden GJ, Bickel WK (eds) Impulsivity: the behavioral and neurological science of discounting. APA Press, Washington, pp 67–92Google Scholar
  20. Haun DBM, Nawroth C, Call J (2011) Great apes’ risk taking strategies in a decision making task. PLoS One 6:e2880. doi: 10.1371/journal.pone.0028801 CrossRefGoogle Scholar
  21. Hayden BY, Platt ML (2007) Temporal discounting predicts risk sensitivity in rhesus macaques. Curr Biol 17:49–53PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hayden BY, Heilbronner SR, Nair AC, Platt ML (2008) Cognitive influences on the risk-seeking by rhesus macaques. Judgm Decis Mak 3:389–395PubMedCentralPubMedGoogle Scholar
  23. Hayden BY, Heilbronner SR, Platt ML (2010) Ambiguity aversion in rhesus macaques. Front Neurosci 4:166. doi: 10.3389/fnins.2010.00166 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Heilbronner SR, Hayden BY (2013) Contextual factors explain risk-seeking preferences in rhesus monkeys. Front Neurosci 7:7. doi: 10.3389/fnins.2013.00007 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Heilbronner SR, Rosati AG, Stevens JR, Hare B, Hauser MD (2008) A fruit in the hand or two in the bush? Divergent risk preferences in chimpanzees and bonobos. Biol Lett 4:246–249PubMedCentralPubMedCrossRefGoogle Scholar
  26. Heilbronner SR, Hayden BY, Platt ML (2011) Decision salience signals in posterior cingulate cortex. Front Neurosci 5:55. doi: 10.3389/fnins.2011.00055 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Hughes RN (1997) Intrinsic exploration in animals: motives and measurement. Behav Process 41:213–226CrossRefGoogle Scholar
  28. Kacelnik A, Bateson M (1996) Risky theories: the effects of variance on foraging decisions. Am Zool 36:402–434Google Scholar
  29. Kacelnik A, El Mouden C (2013) Triumphs and trials of the risk paradigm. Anim Behav 86:1117–1129CrossRefGoogle Scholar
  30. Kahneman D, Tversky A (1979) Prospect theory: an analysis of decision under risk. Econometrica 47:263–292CrossRefGoogle Scholar
  31. Lakshminarayanan VR, Chen MK, Santos LR (2011) The evolution of decision-making under risk: framing effects in monkey risk preferences. J Exp Soc Psychol 47:689–693CrossRefGoogle Scholar
  32. Long AB, Kuhn CM, Platt ML (2009) Serotonin shapes risky decision making in monkeys. Soc Cogn Affect Neurosci 4:346–356PubMedCentralPubMedCrossRefGoogle Scholar
  33. Lynch Alfaro JW, Silva JD Jr, Ryland AB (2012) How different are robust and gracile capuchin monkeys? An argument for the use of Sapajus and Cebus. Am J Primatol 74:273–286CrossRefGoogle Scholar
  34. MacLean EL, Mandalaywala TM, Brannon EM (2012) Variance-sensitive choice in lemurs: constancy trumps quantity. Anim Cogn 15:15–25PubMedCentralPubMedCrossRefGoogle Scholar
  35. MacLean EL, Hare B, Nunn CL, Addessi E, Amici F, Anderson RC, Aureli F, Baker JM, Bania AE, Barnard AM, Boogert NJ, Brannon EM, Bray EE, Bray J, Brent LJN, Burkart JM, Call J, Cantlon JF, Cheke LG, Clayton NS, Delgado MM, DiVincenti LJ, Fujita K, Herrmann E, Hiramatsu C, Jacobs LF, Jordan KE, Laude JR, Leimgruber KL, Messer EJE, Moura ACA, Ostojić L, Picard A, Platt ML, Plotnik JM, Range F, Reader SM, Reddy RB, Sandel AA, Santos LR, Schumann K, Seed AM, Sewall KB, Shaw RC, Slocombe KE, Su Y, Takimoto A, Tan J, Tao R, van Schaik CP, Virányi Z, Visalberghi E, Wade JC, Watanabe A, Widness J, Young J, Zentall TR, Zhao Y (2014) The evolution of self-control. Proc Natl Acad Sci USA 111:E2140–E2148PubMedCentralPubMedCrossRefGoogle Scholar
  36. McAlister L, Pessemier EA (1982) Variety seeking behavior: an interdisciplinary review. J Consum Res 9:311–322CrossRefGoogle Scholar
  37. McCoy AN, Platt ML (2005) Risk-sensitive neurons in macaque posterior cingulate cortex. Nat Neurosci 8:1220–1227PubMedCrossRefGoogle Scholar
  38. Myerson J, Green L, Hanson JS, Holt DD, Estle SJ (2003) Discounting delayed and probabilistic rewards: processes and traits. J Econ Psychol 24:619–635CrossRefGoogle Scholar
  39. O’Neill M, Schultz W (2010) Coding of reward risk by orbitofrontal neurons is mostly distinct from coding of reward value. Neuron 68:789–800PubMedCrossRefGoogle Scholar
  40. Ostaszewski P, Green L, Myerson J (1998) Effect of inflation on the subjective value of delayed and probabilistic rewards. Psychon Bull Rev 5:324–333CrossRefGoogle Scholar
  41. Perry S, Rose L (1994) Begging and transfer of coati meat by white-faced capuchin monkeys, Cebus capucinus. Primates 35:409–415CrossRefGoogle Scholar
  42. Piaget J, Inhelder B (1974) The child’s construction of quantities: conservation and atomism. Basic Books, New YorkGoogle Scholar
  43. Proctor D, Williamson RA, Latzman RD, de Waal FBM, Brosnan SF (2014) Gambling primates: reactions to a modified Iowa Gambling Task in humans, chimpanzees and capuchin monkeys. Anim Cogn 17:983–995Google Scholar
  44. Richard AF, Goldstein SJ, Dewar RE (1989) Weed macaques: the evolutionary implications of macaque feeding ecology. Int J Primatol 10:569–594CrossRefGoogle Scholar
  45. Rosati AG, Hare B (2012) Decision making across social contexts: competition increases preferences for risk in chimpanzees and bonobos. Anim Behav 84:869–879CrossRefGoogle Scholar
  46. Rosati AG, Hare B (2013) Chimpanzees and bonobos exhibit emotional responses to decision outcomes. PLoS One 8:e63058PubMedCentralPubMedCrossRefGoogle Scholar
  47. Sirianni G, Visalberghi E (2013) Wild bearded capuchins process cashew nuts without contacting caustic compounds. Am J Primatol 75:387–393PubMedCrossRefGoogle Scholar
  48. So NY, Stuphorn V (2010) Supplementary eye field encodes option and action value for saccades with variable reward. J Neurophysiol 104:2634–2653PubMedCentralPubMedCrossRefGoogle Scholar
  49. Spagnoletti N, Visalberghi E, Verderane MP, Ottoni E, Izar P, Fragaszy D (2012) Stone tool use in wild bearded capuchin monkeys (Cebus libidinosus). Is it a strategy to overcome food scarcity? Anim Behav 83:1285–1294CrossRefGoogle Scholar
  50. Stephens DW (1981) The logic of risk-sensitive foraging preferences. Anim Behav 29:628–629CrossRefGoogle Scholar
  51. Stevens JR (2010) Rational decision making in primates: the bounded and the ecological. In: Platt ML, Ghazanfar AA (eds) Primate neuroethology. Oxford University Press, Oxford, pp 98–116CrossRefGoogle Scholar
  52. Strait CE, Hayden BY (2013) Preference patterns for skewed gambles in rhesus monkeys. Biol Lett 9:20130902PubMedCentralPubMedCrossRefGoogle Scholar
  53. vanMarle K, Aw J, McCrink K, Santos LR (2006) How capuchin monkeys (Cebus apella) quantify objects and substances. J Comp Psychol 20:416–426CrossRefGoogle Scholar
  54. Visalberghi E, Fragaszy D (2013) The EthoCebus Project. Stone tool use by wild capuchin monkeys. In: Sanz C, Call J, Boesch C (eds) Multidisciplinary perspectives on the cognition and ecology of tool using behaviors. Cambridge University Press, Cambridge, pp 203–222CrossRefGoogle Scholar
  55. von Neumann J, Morgenstern O (1947) Theory of games and economic behaviour. Princeton University Press, PrincetonGoogle Scholar
  56. Watson KK, Ghodasra JH, Platt ML (2009) Serotonin transporter genotype modulates social reward and punishment in rhesus macaques. PLoS One 4:e4156PubMedCentralPubMedCrossRefGoogle Scholar
  57. Wrangham RW, Peterson D (1996) Demonic males: apes and the origins of human violence. Harvard University Press, CambridgeGoogle Scholar
  58. Wright PC (1999) Lemur traits and Madagascar ecology: coping with an island environment. Am J Phys Anthropol Suppl 29:31–72CrossRefGoogle Scholar
  59. Xu ER, Kralik JD (2014) Risky business: rhesus monkeys exhibit persistent preferences for risky options. Front Psychol 5:258PubMedCentralPubMedGoogle Scholar
  60. Yamada H, Tymula A, Louie K, Glimcher PW (2013) Thirst-dependent risk preferences in monkeys identify a primitive form of wealth. Proc Natl Acad Sci USA 110:15788–15793PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Francesca De Petrillo
    • 1
    • 2
  • Marialba Ventricelli
    • 1
    • 3
  • Giorgia Ponsi
    • 1
    • 4
    • 5
  • Elsa Addessi
    • 1
  1. 1.Unità di Primatologia Cognitiva e Centro Primati, Istituto di Scienze e Tecnologie della CognizioneCNRRomeItaly
  2. 2.Dipartimento di Biologia Ambientale“Sapienza” Università di RomaRomeItaly
  3. 3.Dipartimento di Biologia e Biotecnologie “Charles Darwin”“Sapienza” Università di RomaRomeItaly
  4. 4.Dipartimento di Psicologia“Sapienza” Università di RomaRomeItaly
  5. 5.Fondazione Santa Lucia IRCCSRomeItaly

Personalised recommendations