Abstract
Fish are one of the most highly utilised vertebrate taxa by humans; they are harvested from wild stocks as part of global fishing industries, grown under intensive aquaculture conditions, are the most common pet and are widely used for scientific research. But fish are seldom afforded the same level of compassion or welfare as warm-blooded vertebrates. Part of the problem is the large gap between people’s perception of fish intelligence and the scientific reality. This is an important issue because public perception guides government policy. The perception of an animal’s intelligence often drives our decision whether or not to include them in our moral circle. From a welfare perspective, most researchers would suggest that if an animal is sentient, then it can most likely suffer and should therefore be offered some form of formal protection. There has been a debate about fish welfare for decades which centres on the question of whether they are sentient or conscious. The implications for affording the same level of protection to fish as other vertebrates are great, not least because of fishing-related industries. Here, I review the current state of knowledge of fish cognition starting with their sensory perception and moving on to cognition. The review reveals that fish perception and cognitive abilities often match or exceed other vertebrates. A review of the evidence for pain perception strongly suggests that fish experience pain in a manner similar to the rest of the vertebrates. Although scientists cannot provide a definitive answer on the level of consciousness for any non-human vertebrate, the extensive evidence of fish behavioural and cognitive sophistication and pain perception suggests that best practice would be to lend fish the same level of protection as any other vertebrate.
This is a preview of subscription content, access via your institution.
References
Agrillo C, Piffer L, Bisazza A, Butterworth B (2012) Evidence for two numerical systems that are similar in humans and guppies. PLoS One 7(2):e31923
Agrillo C, Petrazzini MEM, Dadda M (2013) Illusionary patterns are fishy for fish, too. Front Neural Circuits 7:137
Amoser S, Ladich F (2005) Are hearing sensitivities of freshwater fish adapted to the ambient noise in their habitats? J Exp Biol 208:3533–3542
Antell SE, Keating DP (1983) Perception of numerical invariance in neonates. Child Dev 54:695–701
Appleby MC, Sandøe P (2002) Philosophical debate on the nature of well-being: implications for animal welfare. Anim Welf 11:283–294
Arnold KE (2000) Kin recognition in rainbowfish (Melanotaenia eachamensis): sex, sibs and shoaling. Behav Ecol Sociobiol 48:385–391
Aronson LR (1956) Further studies on orientation and jumping behavior in the goby fish, Bathygobius soporator. Anat Rec 125:606
Ashley PJ, Ringrose S, Edwards KL, Wallington E, McCrohan CR, Sneddon LU (2009) Effect of noxious stimulation upon antipredator responses and dominance status in rainbow trout. Anim Behav 77:403–410
Balda RP, Kamil AC (1992) Long-term spatial memory in clark’s nutcracker, Nucifraga columbiana. Anim Behav 44:761–769
Barton RA, Venditti C (2013) Human frontal lobes are not relatively large. Proc Natl Acad Sci 110:9001–9006
Bekoff M (2006) Animal passions and beastly virtues: reflections on redecorating nature. Temple University Press, Philadelphia
Bekoff M, Sherman PW (2004) Reflections on animal selves. Trends Ecol Evol 19:176–180
Beukemaj JJ (1970) Acquired hook-avoidance in the pike Esox lucius L. fished with artificial and natural baits. J Fish Biol 2:155–160
Bhat A, Magurran AE (2006) Benefits of familiarity persist after prolonged isolation in guppies. J Fish Biol 68:759–766
Bibost A-L, Brown C (2013) Laterality enhances schooling position in rainbowfish, Melaotaenia spp. PLoS One 8(11):e80907
Biebach H, Gordijn M, Krebs JR (1989) Time-and-place learning by garden warblers, Sylvia borin. Anim Behav 37:353–360
Bisazza A, Brown C (2011) Lateralization of cognitive functions in fish. In: Brown C, Krause J, Laland KN (eds) Fish cognition and behavior. Wiley, Oxford, pp 298–324
Bisazza A, Cantalupo C, Capocchiano M, Vallortigara G (2000) Population lateralisation and social behaviour: a study with 16 species of fish. Laterality 5:269–284
Bitterman ME (1965) The evolution of intelligence. Sci Am 212:92–100
Bitterman ME (1975) The comparative analysis of learning. Science 188:699–709
Block N (1991) Evidence against epiphenomenonalism. Behav Brain Sci 14:670–672
Bonanni R, Natoli E, Cafazzo S, Valsecchi P (2011) Free-ranging dogs assess the quantity of opponents in intergroup conflicts. Anim Cogn 14:103–115
Bouton ME, Peck CA (1989) Context effects of conditioning, extinction, and reinstatement in an appetitive conditioning preparation. Anim Learn Behav 17:188–198
Braithwaite VAB, Huntingford FA (2004) Fish and welfare: do fish have the capacity for pain perception and suffering? Anim Welf 13:s87–s92
Broglio C, Gómez A, Durán E, Salas C, Rodríguez F (2011) Brain and cognition in teleost fish. In: Brown C, Krause J, Laland K (eds) Fish cognition and behavior. Wiley, Oxford, pp 325–358
Broom DM (2001) Evolution of pain. R Soc Med Int Congr Symp Ser 246:17–25
Brown C (2001) Familiarity with the test environment improves escape responses in the crimson spotted rainbowfish, Melanotaenia duboulayi. Anim Cogn 4:109–113
Brown C (2005) Cerebral lateralisation; social constraints and coordinated antipredator responses. Behav Brain Sci 28:591–592
Brown C (2012) Tool use in fishes. Fish Fish 13:105–115
Brown C, Bibost A-L (2014a) Laterality is linked to personality in the black-lined rainbowfish, Melanotaenia nigrans. Behav Ecol Sociobiol 68:999–1005
Brown C, Bibost L-A (2014b) Laterality influences cognitive performance in rainbowfish Melanotaenia duboulayi. Anim Cogn. doi:10.1007/s10071-014-0734-3
Brown C, Laland K (2002a) Social enhancement and social inhibition of foraging behaviour in hatchery-reared Atlantic salmon. J Fish Biol 61:987–998
Brown C, Laland KN (2002b) Social learning of a novel avoidance task in the guppy: conformity and social release. Anim Behav 64:41–47
Brown C, Laland K (2011) Social learning in fishes. In: Brown C, Krause J, Laland K (eds) Fish cognition and behavior. Wiley, Oxford, pp 240–257
Brown C, Warburton K (1999) Social mechanisms enhance escape responses in shoals of rainbowfish, Melanotaenia duboulayi. Environ Biol Fish 56:455–459
Brown C, Gardner C, Braithwaite VA (2004) Population variation in lateralised eye use in the poeciliid Brachyraphis episcopi. Proc R Soc Lond B 271:S455–S457
Brown C, Laland K, Krause J (2011a) Fish cognition and behavior. In: Brown C, Krause J, Laland K (eds) Fish cognition and behaviour. Wiley, Oxford, pp 1–9
Brown GE, Ferrari MCO, Chivers DP (2011b) Learning about danger: chemical alarm cues and threat-sensitive assessment of predation risk by fishes. In: Brown C, Krause J, Laland K (eds) Fish cognition and behavior. Wiley, Oxford, pp 59–80
Bshary R (2011) Machiavellian intelligence in fishes. In: Brown C, Krause J, Laland K (eds) Fish cognition and behavior. Wiley, Cambridge, pp 277–297
Bshary R, Wurth M (2001) Cleaner fish Labroides dimidiatus manipulate client reef fish by providing tactile stimulation. Proc R Soc Lond B 268:1495–1501
Bshary R, Wickler W, Fricke H (2002) Fish cognition: a primate’s eye view. Anim Cogn 5:1–13
Bshary R, Hohner A, Ait-el-Djoudi K, Fricke H (2006) Interspecific communicative and coordinated hunting between groupers and giant moray eels in the Red Sea. PLoS Biol 4:e431
Bshary R, Gingins S, Vail AL (2014) Social cognition in fish. Trends Cogn Sci. doi:10.1016/j.tics.2014.04.005
Byrne R, Whiten A (1989) Machiavellian intelligence II: Extensions and evaluations. Cambridge University Press
Carpenter A (1887) Monkeys opening oysters. Nature 36:53
Chandroo KP, Yue S, Moccia RD (2004) An evaluation of current perspectives on consciousness and pain in fishes. Fish Fish 5:281–295
Cheng K, Newcombe NS (2005) Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychon Bull Rev 12:1–23
Chivers DP, Brown GE, Smith RJF (1995) Familiarity and shoal cohesion in fathead minnows (Pimephales promelas)—implications for antipredator behavior. Can J Zool 73:955–960
Collett TS, Graham P (2004) Animal navigation: path integration, visual landmarks and cognitive maps. Curr Biol 14:R475–R477
Coussi-Korbel S (1994) Learning to outwit a competitor in mangabeys (Cercocebus torquatus torquatus). J Comp Psychol 108:164–171
Damasio A (1999) The feeling of what happens. Heinemann, London
Dawkins MS (1998) Evolution and animal welfare. Q Rev Biol 73:305–328
Dawkins MS (2001) Who needs consciousness? Anim Welf 10(Suppl 1):19–29
Demski LS (2013) The pallium and mind/behavior relationships in Teleost fishes. Brain Behav Evol 82:31–44
Deutschlander ME, Greaves DK, Haimberger T, Hawryshyn CW (2001) Functional mapping of UV photosensitivity during metamorphic transitions in a salmonid fish, Oncorhynchus mykiss. J Exp Biol 204:2401–2413
Dill LM (1977) Refraction and the spitting behavior of the archerfish (Toxotes chatareus). Behav Ecol Sociobiol 2:169–184
Dittman A, Quinn T (1996) Homing in Pacific salmon: mechanisms and ecological basis. J Exp Biol 199:83–91
Douglas R, Hawryshyn C (1990) Behavioural studies of fish vision: an analysis of visual capabilities. In: Douglas R, Djamgoz M (eds) The visual system of fish. Springer, Netherlands, pp 373–418
Dugatkin LA, Godin J-GJ (1992) Reversal of female mate choice by copying in the guppy Poecilia reticulata. Proc R Soc Lond B 249:179–184
Duncan IJH, Petherick JC (1991) The implications of cognitive processes for animal welfare. J Anim Sci 69:5017–5022
Fagan JF, Singer LT (1983) Infant recognition memory as a measure of intelligence. Adv Infancy Res 2:31–78
Fernö A, Huse G, Jakobsen PJ, Kristiansen TS (2011) The role of fish learning skills in fisheries and aquaculture. In: Brown C, Krause J, Laland KN (eds) Fish cognition and behaviour. Blackwell, Oxford, pp 278–310
Fisher J, Hinde RA (1949) The opening of milk bottles by birds. Br Birds 42:347–358
Fricke H (1974) Öko-Ethologie des monogamen Anemonenfisches Amphiprion bicinctus. Z Tierpsychol 36:429–512
Frommen JG, Luz C, Bakker TCM (2007) Kin discrimination in sticklebacks is mediated by social learning rather than innate recognition. Ethology 113:276–282
Frostman P, Sherman PT (2004) Behavioral response to familiar and unfamiliar neighbors in a territorial cichlid, Neolamprologus pulcher. Ichthyol Res 51:283–285
Fuss T, Belackmann H, Schleussel V (2014) The brain creates illusions not just for us: sharks (Chiloscyllium griseum) can “see the magic” as well. Front Neural Circuits 8:24
Gallup GG (1970) Chimpanzees: self recognition. Science 167:86–87
Gerlach G, Hodgins-Davis A, Avolio C, Schunter C (2008) Kin recognition in zebrafish: a 24-hour window for olfactory imprinting. Proc R Soc Lond B 275:2165–2170
Gomahr A, Palzenberger M, Kotrschal K (1992) Density and distribution of external taste buds in cyprinids. Environ Biol Fish 33:125–134
Gómez-Laplaza L, Gerlai R (2011a) Can angelfish (Pterophyllum scalare) count? Discrimination between different shoal sizes follows Weber’s law. Anim Cogn 14:1–9
Gómez-Laplaza L, Gerlai R (2011b) Spontaneous discrimination of small quantities: shoaling preferences in angelfish (Pterophyllum scalare). Anim Cogn 14:565–574
Gomez-Laplaza LM, Morgan E (2005) Time-place learning in the cichlid angelfish, Pterophyllum scalare. Behav Process 70:177–181
Griffiths SW, Magurran AE (1997) Familiarity in schooling fish; how long does it take to acquire. Anim Behav 53:945–949
Grutter AS, Rumney JG, Sinclair-Taylor T, Waldie P, Franklin CE (2011) Fish mucous cocoons: the ‘mosquito nets’ of the sea. Biol Lett 7:292–294
Hansell M, Ruxton GD (2008) Setting tool use within the context of animal construction behaviour. Trends Ecol Evol 23:73–78
Hara TJ (1994) Olfaction and gustation in fish: an overview. Acta Physiol Scand 152:207–217
Hawkins A, Amorim MC (2000) Spawning sounds of the male haddock, Melanogrammus aeglefinus. Environ Biol Fish 59:29–41
Helfman GS, Schultz ET (1984) Social transmission of behavioural traditions in a coral reef fish. Anim Behav 32:379–384
Hermer L, Spelke ES (1994) A geometric process for spatial reorientation in young children. Nature 370:57–59
Heyes CM (1993) Imitation, culture and cognition. Anim Behav 46:999–1010
Heyes CM (1994) Social learning in animals: categories and mechanisms. Biol Rev 69:207–231
Hogue ME, Beaugrand JP, Laguë PC (1996) Coherent use of information by hens observing their former dominant defeating or being defeated by a stranger. Behav Process 38:241–252
Hunt GR (1996) Manufacture and use of hook-tools by New Caledonian crows. Nature 379:249–251
Huntingford FA, Adams C, Braithwaite VA, Kadri S, Pottinger TG, Sandøe P, Turnbull JF (2006) Current issues in fish welfare. J Fish Biol 68:332–372
Irving E, Brown C (2013) Examining the link between personality and laterality in a feral guppy Poecilia reticulata population. J Fish Biol 83:311–325
Iwama GK (2007) The welfare of fish. Dis Aquat Org 75:155–158
Johnston CE, Johnson DL (2000) Sound production in Pimephales notatus (Rafinesque) (Cyprinidae). Copeia 2000:567–571
Jones AM, Brown C, Gardner S (2011) Tool use in the tuskfish Choerodon schoenleinii? Coral Reefs 30:865
Kamermans M, Hawryshyn CW (2011) Teleost polarisation vision: how it might work and what it might be good for. Philos Trans R Soc Lond B 366:742–756
Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science. McGraw-Hill, New York
Kelley JL, Brown C (2011) Predation risk and decision making in poeciliid prey. In: Evans JP, Pilastro A, Schlupp I (eds) Ecology and evolution of poeciliid fishes. University of Chicago Press, pp 174–184
Kelley JL, Magurran AE (2003) Learned predator recognition and anti-predator responses in fishes. Fish Fish 4:216–226
Kirkwood KK, Hubrecht R (2001) Animal consciousness, cognition and welfare. Anim Welf 10(Supplement 1):5–17
Kitchen DM (2004) Alpha male black howler monkey responses to loud calls: effect of numeric odds, male companion behaviour and reproductive investment. Anim Behav 67:125–139
Klausewitz W (1960) Ein bemerkenswerter Zähmungsversuch an freilebenden Fischen. Natur Volk 90:91–96
Kydd E, Brown C (2009) Loss of shoaling preference for familiar individuals in captive-reared crimson spotted rainbowfish Melanotaenia duboulayi. J Fish Biol 74:2187–2195
Lachlan RF, Crooks L, Laland KN (1998) Who follows whom? Shoaling preferences and social learning of foraging information in guppies. Anim Behav 56:181–190
Laland K, Williams K (1997) Shoaling generates social learning of foraging information in guppies. Anim Behav 53:1161–1169
Lefebvre L, Nicolakakis N, Boire D (2002) Tools and brains in birds. Behavior 139:939–973
Lund V, Mejdell CM, Rocklingsberg H, Anthony R, Hastein T (2007) Expanding the moral circle: farmed fish as objects of moral concern. Dis Aquat Org 75:109–118
Macphail EM (1998) The evolution of consciousness. Oxford University Press, Oxford
Magurran AE, Seghers BH, Shaw PW, Carvalho GR (1994) Schooling preferences for familiar fish in the guppy, Poecilia reticulata. J Fish Biol 45:401–406
McComb K, Packer C, Pusey A (1994) Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Anim Behav 47:379–387
Mcphail EM (1982) Brian and intelligence in vertebrates. Oxford University Press, Oxford
Means LW, Ginn SR, Arolfo MP, Pence JD (2000) Breakfast in the nook and dinner in the dining room: time-of-day discrimination in rats. Behav Process 49:21–33
Miklósi Á, Topál J, Csányi V (2004) Comparative social cognition: what can dogs teach us? Anim Behav 67:995–1004
Milinski M (1990) On cooperation in sticklebacks. Anim Behav 40:1190–1191
Milinski M (2003) The function of mate choice in sticklebacks: optimizing MHC genetics. J Fish Biol 63:1–16
Mouritsen H, Ritz T (2005) Magnetoreception and its use in bird navigation. Curr Opin Neurobiol 15:406–414
Nelson A, Alemadi S, Wisenden B (2013) Learned recognition of novel predator odour by convict cichlid embryos. Behav Ecol Sociobiol 67:1269–1273
Neumeyer C (1982) Wavelength discrimination in the goldfish. J Comp Phys A 171:639–649
Nicol CJ (1996) Farm animal cognition. Anim Sci 62:375–391
Nieder A, Dehaene S (2009) Representation of number in the brain. Ann Rev Neurosci 32:185–208
Odling-Smee L, Braithwaite VA (2003) The role of learning in fish orientation. Fish Fish 4:235–246
Oliveira RF, McGregor PK, Latruffe C (1998) Know thine enemy: fighting fish gather information from observing conspecific interactions. Proc R Soc Lond B 265:1045–1049
Östlund-Nilsson S, Holmlund M (2003) The artistic three-spined stickleback (Gasterosteous aculeatus). Behav Ecol Sociobiol 53:214–220
Oulton LJ, Haviland V, Brown C (2013) Predator recognition in rainbowfish, Melanotaenia duboulayi, embryos. PLoS One 8(10):e76061
Panksepp J (2005) Affective consciousness: core emotional feelings in animals and humans. Conscious Cogn 14:30–80
Parker ST, Mitchell RW, Boccia ML (1994) Self-awareness in animals and humans: developmental perspectives. Cambridge University Press, New York
Pavlov IP (1927) Conditioned reflexes. Oxford University Press, Oxford
Popper AN, Lu Z (2000) Structure–function relationships in fish otolith organs. Fish Res 46:15–25
Proops L, McComb K (2012) Cross-modal individual recognition in domestic horses (Equus caballus) extends to familiar humans. Proc R Soc Lond B 279:3131–3138
Reader S (2003) Innovation and social learning: individual variation and brain evolution. Anim Biol 53:147–158
Reader SM, Laland KN (2002) Social intelligence, innovation and enhanced brain size in primates. Proc Natl Acad Sci 99:4436–4441
Reebs S (1996) Time–place learning in golden shiners (Pisces: Cyprinidae). Behav Process 36:253–262
Reebs S (1999) Time-place learning based on food but not on predation risk in a fish, the inanga (Galaxias maculatus). Ethology 105:361–371
Reilly SC, Quinn JP, Cossins AR, Sneddon LU (2008) Behavioural analysis of a nociceptive event in fish: comparisons between three species demonstrate specific responses. Appl Anim Behav Sci 114:248–259
Reiss D, Marino L (2001) Mirror self-recognition in the bottlenose dolphin: a case of cognitive convergence. Proc Natl Acad Sci 98:5937–5942
Rink E, Wullimann MF (2004) Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). Brain Res 1011:206–220
Rogers LJ (2002) Lateralization in vertebrates: its early evolution, general pattern, and development. Adv Study Behav 31:107–161
Rollin BE (1989) The unheeded cry: animal consciousness animal pain and science. Oxford University Press, Oxford, UK
Romanes GJ (1882) Animal intelligence. Appleton and Co., New York
Rose JD (2002) The neurobehavioral nature of fishes and the question of awareness and pain. Rev Fish Sci 10:1–38
Rose JD, Arlinghaus R, Cooke SJ, Diggles BK, Sawynok W, Stevens ED, Wynne CDL (2014) Can fish really feel pain? Fish Fish 15:97–133
Rosenthal G (1999) Using video playback to study sexual communication. Environ Biol Fish 56:307–316
Rosenthal GG, Evans CS (1998) Female preference for swords in Xiphophorus helleri reflects a bias for large apparent size. Proc Natl Acad Sci 95:4431–4436
Roth G, Dicke U (2005) Evolution of the brain and intelligence. Trends Cogn Sci 9:250–257
Rugani R, Fontanari L, Simoni E, Regolin L, Vallortigara G (2009) Arithmetic in newborn chicks. Proc R Soc Lond B 276:2451–2460
Sacchetti B, Scelfo B, Strata P (2009) Cerebellum and emotional behaviour. Neuroscience 162:756–762
Seed A, Byrne R (2010) Animal tool-use. Curr Biol 20:R1032–R1039
Shettleworth, SJ (2010) Cognition, evolution, and behaviour, 2nd edn. Kindle Edition. Oxford University Press, Oxford
Siebeck UE, Parker AN, Prenger D, Mathger LM, Wallis G (2010) Covert face recognition in a species of reef fish. Curr Biol 20:407–410
Silk JB (1999) Male bonnet macaques use information about third-party rank relationships to recruit allies. Anim Behav 58:45–51
Simpson SD, Meekan MG, McCauley RD, Jeffs A (2004) Attraction of settlement-stage coral reed fishes to reef noise. Mar Ecol Prog Ser 276:263–268
Skinner BF (1938) The behavior of organisms: an experimental analysis. Appleton-Century-Crofts, New York
Sneddon LU (2003) The evidence for pain in fish: the use of morphine as an analgesic. Appl Anim Behav Sci 83:153–162
Sneddon LU (2011) Pain perception in fish: evidence and implications for the use of fish. J Conscious Stud 18:209–229
Sneddon LU (2013) Cognition and welfare. In: Brown C, Krause J, Laland K (eds) Fish cognition and behaviour. Wiley, Cambridge, pp 405–434
Sneddon LU, Braithwaite VA, Gentle MJ (2003) Novel object test: examining nociception and fear in the rainbow trout. J Pain 4:431–440
Solomon RL, Wynne LC (1954) Traumatic avoidance learning: the principles of anxiety conservation and partial irreversibility. Psychol Rev 61:353–385
Sovrano VA (2004) Visual lateralization in response to familiar and unfamiliar stimuli in fish. Behav Brain Res 152:385–391
Sovrano VA, Bisazza A (2008) Recognition of partly occluded objects by fish. Anim Cogn 11:161–166
Sovrano VA, Bisazza A (2009) Perception of subjective contours in fish. Perception 38:579–590
Sovrano VA, Bisazza A, Vallortigara G (2002) Modularity and spatial reorientation in a simple mind: encoding of geometric and nongeometric properties of a spatial environment by fish. Cognition 85:B51–B59
Sovrano VA, Bisazza A, Vallortigara G (2003) Modularity as a fish (Xenotoca eiseni) views it: conjoining geometric and nongeometric information for spatial reorientation. J Exp Psychol Anim Behav Process 29:199–210
Stevens JR, Cushman FA, Hauser MD (2005) Evolving the psychological mechanisms for cooperation. Ann Rev Ecol Evol Syst 36:499–518
Sulkowski GM, Hauser MD (2001) Can rhesus monkeys spontaneously subtract? Cognition 79:239–262
Taborsky M (1984) Broodcare helpers in the cichlid fish, Lamprologus brichardi: their costs and benefits. Anim Behav 32:1236–1252
Tebbich S, Bshary R, Grutter A (2002) Cleaner fish Labroides dimidiatus recognise familiar clients. Anim Cogn 5:139–145
Thornhill R, Gangestad SW, Miller R, Scheyd G, McCollough JK, Franklin M (2003) Major histocompatibility complex genes, symmetry, and body scent attractiveness in men and women. Behav Ecol 14:668–678
Thorpe WH (1956) Learning and instinct in animals. Methuen, London
Thünken T, Waltschyk N, Bakker T, Kullmann H (2009) Olfactory self-recognition in a cichlid fish. Anim Cogn 12:717–724
Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208
Tononi G, Edelman G (1998) Consciousness and complexity. Science 282:1846–1851
Trick LM, Pylyshyn ZW (1994) Why are small and large numbers enumerated differently: a limited-capacity preattentive stage in vision. Psychol Rev 101:80–102
Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28:575–633
Vallortigara G, Chiandetti C, Sovrano VA (2011) Brain symmetry (animal). Wiley Interdiscip Rev Cogn Sci 2:146–157
van Lawick-Goodall J (1970) Tool-using primates and other vertebrates. In: Lehrman D, Hinde R, Shaw E (eds) Advances in the study of behavior, vol 3. Academic Press, New York, pp 195–249
Vargas JP, López JC, Salas C, Thinus-Blanc C (2004) Encoding of geometric and featural spatial information by goldfish (Carassius auratus). J Comp Psychol 118(2):206–216
von Frisch K (1913) Weitere Untersuchungen über den Farbensinn der Fische. Zool Jahrb Abt allg Zool Physiol Tiere 34:43–68
von Frisch K (1941) Über einen Schreckstoff der Fischhaut und seine biologische Bedeutung. Z vergl Physiol 29:46–145
Walker MM, Diebel CE, Haugh CV, Pankhurst PM, Montgomery JC, Green CR (1997) Structure and function of the vertebrate magnetic sense. Nature 390:371–376
Whalen J, Gallistel CR, Gelman R (1999) Nonverbal counting in humans: the psychophysics of number representation. Psychol Sci 10:130–137
White G, Brown C (2013) Site fidelity and homing behaviour in intertidal fishes. Mar Biol 160:1365–1372
Whiten A, Byrne RW (1997) Machiavellian intelligence II: extensions and evaluations. Cambridge University Press, Cambridge
Wynn K (1992) Addition and subtraction by human infants. Nature 358:749–750
Wyzisk K, Neumeyer C (2007) Perception of illusory surfaces and contours in goldfish. Vis Neurosci 24:291–298
Yamamoto S, Humle T, Tanaka M (2013) Basis for cumulative cultural evolution in chimpanzees: social learning of a more efficient tool-use technique. PLoS One 8(1):e55768
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Brown, C. Fish intelligence, sentience and ethics. Anim Cogn 18, 1–17 (2015). https://doi.org/10.1007/s10071-014-0761-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10071-014-0761-0